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Abstract

Image stitching methods with spatially-varying homographies have been proposed to
overcome partial misalignments caused by global perspective projection; however, local
warp operators often fracture the coherence of linear structures, resulting in an inconsis-
tent perspective. In this paper, we propose an image stitching method that warps a source
image to a target image by local projective warps using planar perspective guidance. We
first detect line structures that converge into three vanishing points, yielding line-cluster
probability functions for each vanishing point. Then we estimate local homographies that
account for planar perspective guidance from the joint probability of planar guidance, in
addition to spatial coherence. This allows us to enhance linear perspective structures
while warping multiple urban images with grid-like structures. Our results validate the
effectiveness of our method over state-of-the-art projective warp methods in terms of
planar perspective.

1 Introduction
Suppose two different images of a scene are captured with a certain overlap by moving a
camera. These two images result in different perspectives with non-identical pairs of vanish-
ing points. When combining them as a panorama image, it is necessary not only to find out
corresponding points in the image pair for registration, but also to correct perspective pro-
jections of these two images respectively for projective warps. A straightforward solution is
to estimate a global projective warp as a homography from one to the other image using de-
tected features within the overlapping region in both images. However, the global projective
warp often suffers from partial misalignments due to motion parallax, as the global projec-
tive warp assumes that the scene is a single plane at a distance [19]. However, the global
projective warp often suffers from partial misalignments, since it only works for scenes in a
single plane at a distance [19].

Since the depth information of a scene is unavailable, the estimation of a perfect pro-
jective warp for each plane is a severely ill-posed problem, particularly in non-overlapping
regions. Two different approaches have been proposed to address this problem: First, im-
age warp methods with a set of local homographies, such as dual homography [5] and as-
projective-as-possible (APAP) [22], have been proposed to weight spatial coherence between
arbitrary pixels and feature correspondences. However, they often result in typical wavy

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Szeliski} 2006

Citation
Citation
{Szeliski} 2006

Citation
Citation
{Gao, Kim, and Brown} 2011

Citation
Citation
{Zaragoza, Chin, Brown, and Suter} 2013



2 LEE ET AL.: URBAN IMAGE STITCHING USING PLANAR PERSPECTIVE GUIDANCE

(a) As-Projective-As-Possible (APAP) warp (b) Our warp with planar perspective guidance 
Figure 1: Our image stitching method accounts for planar perspective while calculating local projec-
tive warp with the help of grid-like structural characteristics of urban scenes. It allows us to overcome
wavy artifacts commonly observed by local homography-based warp approaches such as APAP [22].

artifacts in non-overlapping regions. Second, hybrid approaches combined with a projec-
tive warp and a similarity transformation have been proposed [3, 4, 13]. These methods
apply a projective warp for the overlapping region and transform objects’ similarity us-
ing shape-preserving transformations such as rotation, scaling, translation and reflection for
non-overlapping regions. However, these combined approaches often result in inconsistent
perspective and seam artifacts.

In this paper, we propose a novel image warp method that accounts for the planar per-
spective probability as warp guidance to enhance image structures while applying local ho-
mographies for projective warp. The proposed method is inspired by planar structure priors
used for recent vision applications, such as image inpainting and super-resolution [7, 8], but
our method applies the planar probability as guidance to relax the ill-posedness of the projec-
tive warp problem for image stitching. Our method first detects line structures that converge
into the same vanishing point and obtain clusters of the line segments, yielding planar prob-
abilities that have the same vanishing point pair. We then estimate local homographies that
account for not only a planar perspective but also spatial coherence of line structures. We
found that the proposed method maintains planar perspective structure of input images with-
out wavy artifacts (see Figure 1), thereby becoming powerful in stitching urban scenes that
consist of grid-like structures, targeting rendering applications that provide panoramic views
from positions along many streets, such as Google Street View.

2 Related Work

Image stitching has been researched extensively in recent decades. For the sake of brevity,
we refer readers to [19] for the foundations of this subject. Recent research in image stitching
can be categorized into two groups: (a) adaptive warp and (b) shape-preserving warp. This
section reviews these two state-of-the-art approaches.

Adaptive Warp Lin et al. [14] introduced the smoothly varying affine (SVA) transforma-
tion for image warp. While SVA can relax the difference between local and global transfor-
mations, the fundamental difference between affine and projective transformation remains
as a limitation. Gao et al. [5] proposed the dual homography (DH) method that determines
two different homographies for ground and distant planes from classified features using k-
means clustering. However, this often requires manual user interaction to select seed points
for clustering in complex scenes that should consist of ground and distant planes. Zaragoza
et al. [22] introduced the as-projective-as-possible (APAP) warp method using moving di-
rect linear transformation (DLT). They build locally varying homographies for each grid by
taking into account the distance between a pixel to a feature point. The local homographies
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near feature points tend to weight locality more, while the local homographies distant from
feature points are likely to resemble the global homography. However, the Gaussian weight
for estimating local homographies often fracture linear structures, resulting in wavy artifacts.
Joo et al. [10] extended the APAP approach by adding line features in addition to original
SIFT features. However, since local homographies are calculated using the spatial distance,
they still yield traditional wavy artifacts. In order to account for warping/matching error
of corresponding lines in the warp estimation, Li et al. [12] and Xiang et al. [20] consider
line segments in an image. In contrast, we estimate joint planar probabilities of the same
vanishing point to preserve a solider planar perspective over the prior work.

In this paper, we mainly attempt to overcome the wavy artifacts that commonly occur
in locally adaptive warp methods [5, 10, 12, 14, 22] with the help of recognizing grid-like
structures of urban scenes. Instead of using a simple distance-based weight between arbitrary
pixels and feature points, we newly take into account planar perspective guidance in urban
scenes, which are obtained from joint probability maps of vanishing points. Our projective
warp adjusts local homographies without suffering from wavy artifacts.
Shape-Preserving Warp Owing to motion parallax, projective warp methods result in
perspective distortion particularly in non-overlapping regions. Therefore, shape-preserving
warp methods with similarity transformation have been proposed to mitigate this fundamen-
tal problem in a plausible manner [1, 2, 15]. Chang et al. [3] proposed the shape-preserving-
half-projective (SPHP) image stitching method, which provides a smooth transition of in-
terpolation from the DLT region to non-overlapping regions. They apply a similarity trans-
formation in non-overlapping regions such as rotation, scaling, and translation instead of
projective warp. Zhang and Liu [24] detect a highly distorted region of a homography warp
and determine a proper similarity transformation to attenuate perspective distortion. Lin et
al. [13] proposed the adaptive as-natural-as-possible (AANAP) image warp that extrapolates
the local homography to the non-overlapping regions using homography linearization. They
also compute a global similarity transformation to keep global structures such as a horizon.
Chen et al. [4] optimize the warp of mesh grids while preserving conformality using a global
rotation prior. These approaches with similarity transformation are oriented to find a plausi-
ble attenuation of projective warp; they often result in inconsistent perspective particularly
in non-overlapping regions.

In contrast, we exploit planar perspective guidance for estimating local homographies in
order to preserve linear perspective structures robustly in image stitching. Our objective is
to achieve a more accurate linear perspective in local projective warp. To the best of our
knowledge, this is the first work to exploit planar perspective guidance for image stitching.

3 Image Warp using Planar Perspective Guidance
We are motivated to estimate more accurate local warps that can provide coherent planar
structures, resulting in a sound perspective after stitching. We attempt to achieve this goal by
estimating planar perspective guidance from joint probabilities of detected vanishing points.

3.1 Global and Local Projective Warp

Homography This section briefly reviews the geometric perspective of a global homogra-
phy and its fundamental limitation. A global homography is used for projective warp. Sup-
pose we have a corner of a building captured by two different camera poses resulting in two
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Figure 2: (a) A homography Hx→x′ warps a point x in a source image I to a point x′ in a target
image I′. The homography Hx→x′ is only valid when the point x sits on a object plane M such that x is
a on the image I. When the homography Hx→x′ is applied to a point b that is a projected point of the
point B on the different object plane K, the point b is warped to a point b̂′, rather than b′ in the target
image I′ due to the perspective difference between the two object planes. The red arrow indicates a
homography error. Points C and C′ indicate the center of projection. (b) Three vanishing points (v1, v2
and v3) can be obtained from line clusters, where connecting the two horizontal vanishing points forms
a vanishing line at infinity.

different images I and I′, schematically depicted in Figure 2. Let a plane of the building M be
defined as (n>,d)> ∈R4×1 in the 3D world coordinates, where n is the surface normal and d
is the distance from the camera. In homogeneous 2D coordinates, a point x ∈R3×1 captured
in an image I can be unprojected into a point X = (x>,−n>x/d)> ∈R4×1 in the object plane
M. The object point X in the world coordinates can then be transformed to the other image I′

via a rigid body transformation of rotation and translation. We denote the transformation of
the point X to the point x′ in image I′ as M′ = [R|t] ∈ R3×4, where R ∈ R3×3 is rotation and
t ∈R3×1 is translation: x′ = M′X. Finally a homography H, a transformation from the point
x in the image I to the point x′ in the image I′, can be calculated via 3D world coordinates X
as follows [6]:

x′ = Rx− tn>x/d = (R− tn>/d)x,

x′ = Hx, where H = (R− tn>/d).
(1)

To this end, any point x on an object plane M in the image I can be transformed into a point x′
in the image I′ by the homography H ∈ R3×3: x′ = Hx. While the homography is valid for
transforming a point x from the specific object plane M to the other image I′, it is invalid for
another object plane K on the scene as shown in Figure 2(a).
Homography Estimation In order to obtain a global homography for given correspon-
dence between images, we utilize the traditional direct linear transformation (DLT) [6]. A
homography between two images I and I′ defines a linear transformation between a pair of
matching correspondences. A projective warp maps a point x in the source image I to the
other point x′ in the target image I′ using x′ = Hx: x′

y′

1

'
 h1 h2 h3

h4 h5 h6
h7 h8 h9

 x
y
1

=

 h>1 x
h>2 x
h>3 x

 ,
where ' denotes equality up to scale, h>i ∈ R1×3 is the i-th row of H ∈ R3×3. Since the
directions of x′ and Hx are the same but may differ in mangitude, we obtain a linear equation
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by the cross product O3×1 = x′×Hx. The equation is then rewritten in terms of the vector
form of homography h ∈ R9×1,

O3×1 =

 O1×3 −x> y′x>
x> O1×3 −x′x>
−y′x> x′x> O1×3

h, h =

 h1
h2
h3

 .
Note that there are two independent linear equations for a pair of matching points in this
equation. For given N feature correspondences {xi,x′i}

N
i=1 for training, we estimate a ho-

mography ĥ to predict a projective warp for an arbitrary position x∗ by solving the linear
least-square system by singular value decomposition (SVD):

ĥ = argmin
h
‖Ah‖2 s.t. ‖h‖= 1. (2)

where A ∈ R2N×9 is a matrix that stacks all linearly independent equations of N matching
pairs. Since we have the estimated H (reshaped ĥ), we can warp a pixel at an arbitrary
position x∗ in the source image I to the position x′∗ in the target image I′.
Combining Global and Local Warp As shown in Figure 2(a), a single global homogra-
phy is insufficient to represent the geometric variety of every surface in the real world. There-
fore, the use of locally adaptive homographies has been proposed by previous works [5, 10,
14, 22]. Zaragoza et al. [22] proposed using a spatial weight to build locally varying homo-
graphies instead of using a single global homography. When estimating each local homog-
raphy for an arbitrary position x∗ using Equation (2), they account for the spatial distance
between the arbitrary position x∗ and the feature correspondence xi with weight Ws

∗.
Ws
∗ ∈ R2N×2N is a diagonal form of spatial weights that can be used as Ws

∗A when solv-
ing the linear system in Equation (2): Ws

∗ = diag
([

w1
∗ w1
∗ · · · wN

∗ wN
∗
])

, where wi
∗ is the

Gaussian-weighted distance between the arbitrary position x∗ and the i-th feature correspon-
dence xi: wi

∗ = max
(

exp
(
−‖xi−x∗‖2 /σ2

)
,γ
)

. In particular, the homography estimation
could fail when the distance is large in the extrapolated region. To prevent the numerical
problem, the Gaussian weight is clamped with a small value γ ∈ [0,1]. When the parame-
ter γ increases, the global homography is weighted more than the local homography. The
parameter σ varies depending on the image resolution. However, the spatially-weighted esti-
mation of local homographies does not take any image structures into account while warping
multiple planes in the scene, resulting in typical wavy artifacts in warped images (Figure 1).

3.2 Planar Perspective Guidance
In order to overcome the limitation of the spatially-weighted local homographies, we are
motivated to account for grid-like image structures in typical urban scenes, while estimating
projective warp as local homographies.
Vanishing Points When linear perspective is preserved in a landscape, the extensions of
line structures in the scene converge to a vanishing point (VP), located outside the canvas,
as shown in Figure 2(b). Since vanishing points can help us understand geometric structures
of a scene [16, 18], VPs have been utilized in many vision applications [2, 7, 8]. There
are several methods available for estimating VPs. Ikeuchi et al. [9] estimate VPs using line
clustering, and Lezama et al. [11] approximate VPs through line fitting in the primal-and-
dual space, and Zhai et al. [23] trained deep neural networks to detect VPs automatically.
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Figure 3: Column (a) shows an input image and detected line structures. Columns (b), (c) and (d)
depict spatial, planar and combined weights respectively, where the combined weights are obtained
by element-wise multiplication of the spatial and planar weights. The first-row images overlay color-
indexed weight maps on the input image. Yellowish colors indicate higher weights than bluish colors.
The second-row present three functions of spatial, planar and combined weights along an intersection
line of the image. In addition to the traditional spatial weight (b), we introduce the use of planar weight
(c) to combine both of the weights together to an plane-aware weight.

In this work, we estimate VPs to represent the parameters of an arbitrary plane M∗ in the
scene, by employing a standard voting approach [6]. We first extract lines by using a line
segment detector (LSD) to obtain line clusters and then employ random sample consensus
(RANSAC) for estimating VPs. We detect up to three VPs in an image, assuming that the
input image includes grid-like structures which is typical in urban landscapes. See the first
column (a) in Figure 3 for an example.

Coplanarity Probability Since we have three VPs, we can parameterize an arbitrary
plane M∗ in an image using three perspective basis planes, where each basis plane shares
two distinct VPs, following [8]. Under a projective transformation, when line clusters on the
plane M∗ are extended to infinity, they are mapped to a horizontal fixed line lM∗∞ that connects
the two distinct VPs [v1 and v2 in Figure 2(b)], which is also known as the vanishing line:

lM∗∞ = [lM∗
1 lM∗

2 lM∗
3 ]>. (3)

Here lM∗∞ is also homogeneous and has two degrees of freedom. For instance, when we want
to parameterize a perspective basis plane M1, we need at least two detected line clusters, lM1

1
and lM1

2 , as input. Note that instead of computing affine rectification from the perspective
parameterization to a Euclidean plane [6], we directly use the probability of projective plane
parameters, which estimates which plane the pixel x∗ resides in.

Since we estimate three line clusters from each vanishing point, we iteratively diffuse the
line clusters {lM∗

i }3
i=1 by applying the Gaussian filter and then obtain each line probability

of the i-th line clusters for plane M∗, P(lM∗
i |x∗), on the given arbitrary pixel x∗. Finally, we

can estimate the plane probability that includes the vanishing line of two VPs. Each plane
probability that the arbitrary pixel x∗ resides in is calculated from the joint probability of two
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different line probabilities:

P(M1|x∗) = P(lM∗
1 |x∗) ·P(l

M∗
2 |x∗),

P(M2|x∗) = P(lM∗
2 |x∗) ·P(l

M∗
3 |x∗),

P(M3|x∗) = P(lM∗
3 |x∗) ·P(l

M∗
1 |x∗).

Figure 3 shows an example of the probability distributions of planar perspective of an image.
Estimating Planar-Perspective Warp In addition to the spatial weight Ws

∗ using the
distance between pixel x∗ and xi in the source image, we utilize the planar perspective dis-
tribution as a probability function for estimating local homography for pixel x∗. Wp

∗ ∈
R2N×2N is also a diagonal form of planar perspective weights that can be used with the
corresponding matrix A of matched feature pairs for estimating local homographies: Wp

∗ =
diag

([
u1
∗ u1
∗ · · · uN

∗ uN
∗
])

, where ui
∗ is a normalized joint planar probability distribution of

three projective basis planes at arbitrary pixel x∗ and the i-th feature correspondence xi.

ui
∗ =

{(
∑

3
j=1 P(M j|x∗) ·P(M j|xi)

)
+λ

2
}α

, (4)

where λ is the minimum probability of the fronto-parallel plane for far distant objects with-
out any line structures such as sky in order to avoid the numerical problem (λ is a fixed value
10−5), α ∈ [0,1] is for handling the balance between the spatial and the planar weight.

Finally, a local homography can be estimated by taking into account the spatial weight
Ws
∗ and the planar weight Wp

∗ between arbitrary pixel x∗ and the i-th feature correspon-
dence xi:

ĥ∗ = argmin
h
‖Wp

∗W
s
∗Ah‖2. (5)

As shown in Figure 3, while estimating a local homography at arbitrary pixel position x∗, the
spatial weight Ws

∗ accounts for the feature correspondence at the shorter distance (x1) more
than the distant features (x2), and the planar weight Wp

∗ accounts for the feature correspon-
dence (x1) in the plane of the similar orientation more than the different one (x2).

(a) APAP

200s =

(b) Ours (c) APAP (d) Ours

400s =

600s =

Our choice Our choice

Our result of (σ=200).

Figure 4: The impact of planar weights while varying a feature influence σ . We set the parameter
σ to 200 for results in this paper by accounting for planar perspective and overall alignment. APAP
results that are calculated without planar weights are in (a) and (c), which suffers from wavy artifacts
and misalignments. Our method with planar weights reduces these artifacts by attenuating the parallax
effect on non-coplanar features. (b) and (d) validate the robustness of our proposed method against
changing parameters.
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4 Results
We implement our planar-perspective warp method in MATLAB. We use the VLFeat library
to detect and match SIFT features from input images. We demonstrate how our method
preserves the planar perspective, compared to other projective warp methods.

Impacts of Parameters Figure 4 demonstrates the effectiveness of our planar weight
while varying the parameter σ for the spatial weight Ws

∗, compared with results by the APAP
method [22] that does not account for planar perspective. The steepness of the Gaussian
function controlled by the parameter σ has significant impacts on wavy artifacts and overall
alignment, as shown in (c). Our planar weight is effective for mitigating the drawback of
local homographies methods by attenuating the parallax effect in perspective projection of
different object planes in the scene.
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Figure 5: Comparisons with state-of-the-art stitching methods. Our method outperforms them in
terms of warping planar building structures with less distortion, resulting in solid urban structures.

Comparison We compare our method with other projective warp-based image stitch-
ing methods, a global homography (the result of the DLT), a dual homography (DH) [5],
APAP [22], and AANAP [13] in Figure 5. We use the common image datasets from previ-
ous works [3, 4, 5, 13, 17, 22]. For more results of our method compared with the state-of-
the-art methods, refer to the supplemental material. For implementing the dual homography
method, we carefully choose seed points to make a point cluster on every plane. In both
of the homography planes, the DH method accurately estimates the homography of planes
when there are two dominant homographies in the scene. The APAP method presents good
alignments in the overlapping region, but often suffers from misalignments, resulting in wavy
artifacts. The result of AANAP often shows the limitation of homography linearization on
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a projective planar region. Most algorithms suffer from misalignments near the corner and
severe distortion while propagating local homographies on the planar projective region. In
summary, by detecting object planes in a scene using projective geometry, our method can
estimate more accurate local homographies for planar structures than state-of-the-art projec-
tive warp methods.

5 Discussion and Future Work
Even though our planar-perspective warp method overcomes partial misalignments caused
by perspective projection for urban scenes, there are several limitations.

We design our algorithm for urban scenes, assuming that an urban scene includes enough
grid-like line structures to estimate vanishing points. Our method performs consistently
for general urban scenes that include grid-like structures such as windows. Quality of our
results depends on image structures of input images and also accuracy of our vanishing point
detection method as shown in Figure 6. As shown in Figure 6(c), a planar probability is not
uniform because of sparsity of horizontal lines in Figure 6(b). Even though our method can
reduce wavy artifacts thanks to an isotropic distance weight, it still can suffer from wavy
artifacts in certain scenes, due to a simple Gaussian weighted propagation of the weight. We
could additionally introduce a smoothness term over a homography field or apply contents-
aware warping approaches such as local similarity optimization [2, 4, 5, 15, 24] to balance
both conformity and planar perspective. This remains as future work.

(a) (b) (c) (d)

Figure 6: The impact on planar probability map. (a) shows our image stitching result. (b) presents
detected line segments. (c) is a planar probability map computed from joint probabilities. (d) shows a
closeup view of our result with wavy artifacts due to the non-uniformity of the planar probability map.

In addition, urban scenes with many natural objects like trees or dynamic free-formed
shapes in the architecture cannot be handled properly. In such cases, our method performs
similarly to the APAP method with wavy artifacts, since the vanishing point probabilities
cannot be estimated accurately. An urban scene with too many planes could be also problem-
atic due to depth ambiguity while estimating planar perspective guidance. It could be solved
by adopting a depth-based approach of DLT, such as the bundle adjusted MDLT [21], for the
overlapping region and 3D scene self-understanding to infer depth in the non-overlapping
region.

6 Conclusion
We have exploited planar perspective guidance for image stitching. The proposed method
performs 3D scene understanding using vanishing points and estimates an accurate projec-
tive warp in a non-overlapping region while preserving perspective alignments in overlap-
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ping regions. To validate the proposed method, we demonstrate the effectiveness of pla-
nar perspective guidance over the state-of-the-art methods in terms of robust alignment and
planar-structure preservation.
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