
Light-weight Novel View Synthesis for Casual
Multiview Photography

Inchang Choi, Yeong Beum Lee, Dae R. Jeong, Insik Shin, and Min H. Kim

KAIST School of Computing

Abstract. Traditional view synthesis for image-based rendering requires
various processes: camera synchronization with professional equipment,
geometric calibration, multiview stereo, and surface reconstruction, re-
sulting in heavy computation, in addition to manual user interactions
throughout these processes. Therefore, view synthesis has been available
exclusively for professional users. In this paper, we address these expen-
sive costs to enable view synthesis for casual users even with mobile-
phone cameras. We assume that casual users take multiple photographs
using their phone-cameras, which are used for view synthesis. First, with-
out relying on any expensive synchronization hardware, our method can
capture synchronous multiview photographs by utilizing a wireless net-
work protocol. Second, our method provides light-weight image-based
rendering on the mobile phone, where heavy computational processes,
such as estimating geometry proxies, alpha mattes, and inpainted tex-
tures, are processed by a server to be shared in an interactable time.
Finally, it allows us to render novel view synthesis along a virtual cam-
era path on the mobile devices, enabling bullet-time photography from
casual multiview captures.

Keywords: view synthesis · computational photography · multiview.

1 Introduction

Novel view synthesis from multiview photographs is an image-based rendering
method and requires various computational processes to synthesize new view-
points from captured photographs. Starting from camera synchronization with
a professional camera synchronization hardware, heavy computational processes
need to be conducted, such as camera tracking for unstructured cameras, geo-
metric calibrations of camera properties, multiview stereo matching for dense
point clouds, surface reconstruction, inverse rendering, and so on. Also, these
computational processes require user interaction for synchronization, segmenta-
tion, inpainting, geometric reconstruction, etc. Therefore, novel view synthesis
has been limited to professional setups, not available on casual computing de-
vices, such as mobile phones.

In this work, by addressing these cost challenges of expensive hardware, heavy
computations, and manual user interaction, our practical solution enables a ca-
sual, automated view synthesis for general users. We developed an efficient auto-
mated image-based rendering method on a casual setup that consists of multiple
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mobile devices connected to a server with a wireless network. Once multiple
mobile cameras capture a scene, our method creates bullet-time photography
automatically played on the mobile devices, where it freezes time to navigate
the scene from novel viewpoints.
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Fig. 1. Overview of our view synthesis.

Overview Figure 1 provides overview
of our automated process of casual
view synthesis for mobile multiview
photography. Since multiple cameras
need to capture a scene simultane-
ously, we first develop a synchroniza-
tion method for mobile camera de-
vices using a network time protocol
(Section 3.1). We then transfer syn-
chronous photographs to a server that
computes geometry and texture el-
ements. In the geometry processing
step, we estimate the camera param-
eters of the unstructured (hand-held)
mobile devices and the point clouds,
which forms the geometry proxy of
the scene (Section 3.2). Concurrently,
we convert multiview photographs to
texture elements for rendering. In this step, we separate the foreground and
background objects in input images. We also inpaint occlusions in background
images rapidly (Section 3.3). Once conversion processes are finished, graphics
components are transferred to mobile devices through a wireless network, yield-
ing real-time rendering of a virtual scene along the virtual camera path that
shows bullet-time photography (Section 3.4).

2 Related Work

Prior works in image-based rendering synthesize novel views from a set of images.
They can be classified into three categories according to what geometry infor-
mation is required [7]. First, a light field can represent light transport of a scene,
which can be interpolated to render a novel view from a captured light field.
Instead of requiring the geometry information of a scene, light-field rendering
exploits a large number of image data. These images are sampled from a dense
and uniform camera grid, to approximate the plenoptic function of the scene. To
avoid uniform grid sampling, Buehler et al. [1, 14, 13] proposed unstructured lu-
migraph rendering, but it requires a rough geometry proxy of an object. Second,
view-dependent texture mapping (VDTM) can render a novel view by utilizing
the geometry model of a scene as an input [17]. Debevec et al. [5] proposed a
VDTM method, where images are projected on to a given input geometry model
and a new view is rendered with those projected textures. However, the geometry
models used in VDTM need to be either modeled manually or scanned by a 3D
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scanner. Sinha et al. [16] proposed a view synthesis that uses a geometry model
produced by approximating planes on the scene, but the approximation is valid
only for planar objects such as buildings. Lastly, depth image-based rendering
(DIRB) utilizes a camera projection mechanism and textured depth layers [4].
Instead of taking a geometry model as an input, it estimates the depth infor-
mation from the corresponding feature points between stereo images, but this
approach restricts a novel viewpoint to be close to the real viewpoints. A few
studies have performed view synthesis using depth maps [11] or layered depth
images [3, 15]. Unlike these prior works, we generate geometry proxies from the
point cloud of the scene using a multiview stereo approach [18], instead of using
any scanned geometry or depth maps. This work enables an automated, efficient
image-based rendering with plausible view synthesis. The geometry proxies in
our method are subject to a two-pass rendering process like the textured depth
layers in DIRB. Refer to Section 3.2 for more details.

Recently, Wang et al. [21] introduced a novel view synthesis method, tar-
geting a mobile platform. The study explores potentials of mobile application
preliminarily; however, it does not focus on both automation and efficiency of
view synthesis, taking more than an hour to process with the help of manual
input for each stage. To address the impracticability of the prior work, we fo-
cus on both automation and efficiency for casual view synthesis, enabling us to
produce plausible results for about a minute on a mobile platform even without
requiring manual interactions.

3 Casual View Synthesis

3.1 Mobile Camera Synchronization

For practical synchronization for the casual setup, we adopt the network time
protocol (NTP) [12] to synchronize the clock of every mobile device. In our setup,
one of the mobile devices acts as a sync host device that triggers shooting, and
the others work as clients (Figure 2). To synchronize the clocks of devices, all
the client devices send the host device an NTP request packet that records
a timestamp t0 of the time when the packet is sent. When the host device
receives the packet, it records a timestamp t1 on the packet and then returns it
to the client with a new timestamp t2 when it departs. The client then records
a timestamp t3 when it receives the packet.

Sync host 

Sync client 		
t0 		t3

		t1 		t2

time 

Fig. 2. Packet-based synchronization.

Finally, the time difference td
between devices is calculated as
{(t1 − t0) + (t2 − t3)} /2 to adjust the
clock on each client device. Each de-
vice’s clock is then updated by adding
td on its clock from the time of re-
ceiving the return packet. When the
host mobile device triggers the syn-
chronous shooting command to make
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each client device capture a scene si-
multaneously, we allow a short delay of the one-way trip time of the packet tr
as {(t3 − t0)− (t2 − t1)} /2 with an additional allowance of approximately ∼100
milliseconds to account for the fluctuation of the wireless network speed in our
experiments. Note that since the accuracy of NTP is highly affected by the
network environments, all mobile devices are connected via WiFi Direct [2] to
minimize any potential error caused by the network environments.

3.2 Automated Estimation of Geometry Proxies

Since the server receives multiple synchronous photographs, it performs the bun-
dle adjustment [20] to obtain point cloud representations of the scene with cam-
era parameters and then approximates geometry proxies of surfaces from clouds
for rendering. Through this process, we obtain the point clouds of the fore-
ground and background objects and camera parameters. From the estimated
point clouds, we generate geometry proxies for rendering.

Multiview Stereo We follow the standard multiview stereo method, so-called
structure-from-motion, to obtain point clouds and camera parameters. Given
a set of synchronized multiview images I = {I1, I2, . . . , In}, we estimate a
set of point clouds P = {P1, P2, . . . , Pm} of the scene and a set of camera
parameters C = {C1, C2, . . . , Cn}. The bundle adjustment process begins by
performing feature matching between input images [20], where SIFT feature
points [9] are paired and filtered through RANSAC [6]. We use a set of n
camera devices to yield a set of m point clouds, where qij is the observed
projection of feature points of the j-th point cloud in the i-th camera. Then
the objective function for obtaining both P and C can be defined using a
pinhole-projection function Φ that projects point Pj to image Ii of camera Ci as

minC,P

∑n
i=1

∑m
j=1 wij ‖qij − Φ (Ci, Pj)‖2, where the weight term wij is set to 1

when Pj is visible from Ci so that Pj exists in image Ii. Otherwise, it is set to 0.
The objective function is solved through a state-of-the-art parallel optimization
method [22]. Figures 3(a) shows an example of a point cloud of a scene and the
camera frustums estimated by the bundle adjustment. Figure 3(b) shows the
estimated geometric proxies for the foreground and background objects.

Geometry Proxy We next separate the point cloud P into two sets using
the k-means clustering algorithm [10]. The k-means clustering algorithm with
k = 2 quantizes the input point cloud P to the point cloud for an object in
the foreground F and the point cloud of the background B. The clustering pro-
cess is performed by optimizing the cost function: minF ,B

∑
P∈F ‖P − µF ‖2 +∑

P∈B ‖P − µB‖2, where µF and µB indicate the center of the foreground and
the background cluster, respectively. Given the separated point clouds, we gen-
erate geometry proxies for them. For the foreground point cloud F, we build a
cylinder of radius r, of which the center is µF . The background point cloud B is
approximated by a plane containing the center point µB with the normal vec-
tor of (0, 0, 1). We denote the foreground cylindrical proxy and the background
planar as GF and GB, respectively.



Light-weight Novel View Synthesis for Casual Multiview Photography 5

3.3 Efficient Production of Textures

We found that the prior work [21] is based on a piece-wise planar stereo ap-
proach [16], which is significantly expensive and less compatible with ordinary
scenes to determine depth. We therefore introduce a novel rendering workflow
that combines learning-based segmentations of synchronized photographs with
an efficient rendering approach based on geometry proxies to achieve both effi-
ciency and plausibility. To this end, we convert multiview photographs to tex-
tures of the foreground and the background for layered geometric structures.

Foreground Segmentation Since we produce two separate geometry proxies of
the foreground and the background, we segment the input images into two sets
of textures, respectively. To exclude any necessity of extra user inputs, we adopt
a state-of-the-art semantic image segmentation method based on a convolutional
neural network (CNN) [23]. This semantic segmentation method enables us to
generate the foreground masks MF = {MF1 ,MF2 , . . . ,MFn } and the background
masks MB = {MB1 ,MB2 , . . . ,MBn } for the input images I = {I1, I2, . . . , In} with-
out any user input. Masks MFi and MBi for image Ii are binary-valued arrays,
where i represents that the pixel is classified as the corresponding label. Note
that we assume that the main subject for multiview photography is one or more
people for simplicity. The masks are then used for alpha-blending when rendering
view synthesis.

Background Inpainting Using the foreground and background masks, we obtain
two sets of textures TF = {TFi |TFi , Ii ◦ MFi } and TB = {TBi |TBi , Ii ◦
MBi }, where ◦ is the Hadamard product operator. There exist empty regions in
each background texture in TB caused by the background mask. The missing
regions particularly in the background occur by the occlusion of the foreground
object. It causes inevitable artifacts when a virtual camera Vk renders a novel,
synthetic view. To alleviate this occlusion problem, we fill the empty regions by
applying an inpainting algorithm. Targeting the interactable performance of our
method, we employ a fast-marching inpainting algorithm [19] that approximates
unknown pixel values with the weighted sum of pixel known neighboring pixels.
After holes are inpainted in the background textures TB, they are passed to the

(c) Laplacian inpainting (d) Fast-marching inpainting(a) Cameras and point clouds (b) Geometric proxies

Fig. 3. An example of estimated point clouds (a) and proxy geometry (b) of a scene.
(c) is inpainted by a Laplacian-based method [8] in 362 secs. (d) is completed by a
fast-marching method [19] that we chose in 1.07 secs. Insets show inpainted regions.
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rendering pipeline on a mobile device, together with the foreground texture TF ,
to synthesize novel frames. Figures 3 (c) and (d) compare background textures
by different inpainting methods.

3.4 Automated Image-based Rendering

For synthetic view rendering, we aim to automatically create novel view synthe-
sis for bullet-time photography to yield a frozen-time animation. We therefore
generate a trajectory array of virtual cameras at novel viewpoints from the array
of the real cameras.

Virtual Camera Orientations We sort the set of camera parameters C =
{C1, C2, . . . , Cn} by the x coordinates of the cameras, and we assume that C1

indicates the leftmost located camera and Cn refers to the rightmost located cam-
era. From the i-th camera parameters Ci, we then extract orientation parameters
for rotation RCi and position parameters for translation TCi , respectively. The
intrinsic parameters of the virtual cameras are set to those of the real cameras.

(a)

(b)

Fig. 4. (a) an object at the cross position is
captured by ten cameras. (b) presents the
interpolated virtual camera frames.

See Figure 4 for our view path gener-
ation.

Suppose we want to build a set
of l novel virtual camera parameters
V = {V1, V2, . . . , Vl}. The orienta-
tion parameters RVk of the k-th vir-
tual camera Vk are estimated by ac-
counting for neighboring cameras’ ori-
entations RC with spatially-varying
weights so that the virtual cameras
look at a similar position in the scene.
We found that this makes users feel
comfortable while watching view syn-
thesis. The weight is defined by the
distance between the virtual camera
Vk and the i-th real camera Ci in the
camera set C. The rotation parameter
RVk is calculated as follows:

RVk =

∑n
i=1 wikRCi∑n

i=1 wik
, wik =

1√
2πσ2

e−
‖TVk

−TCi‖
2

2σ2

where the weight wik is set to have a Gaussian distribution of the distance
between the virtual camera position TVk and the i-th real camera position TCi .
Therefore, the interpolated orientation of the virtual camera is more influenced
by that of closer real cameras than those of distant real cameras. The parameter
σ controls how fast the weight decreases as the distance between two camera
positions increases.

Virtual Camera Positions We first create a set of k virtual cameras that are uni-
formly distributed along the x-axis from the leftmost located camera T x

C1
to the
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rightmost camera T x
Cn

. For both y and z positions, we interpolate intermediate
values using a cubic spline function Ψ(x) for given x coordinates. For instance,
we determine y coordinates using y = Ψy(x) in the x-y plane using the set of
original camera points {(T x

Ci
, T y

Ci
)|Ci ∈ C}, where the spline function Ψy(x) is in

the form of the third-order polynomials. The corresponding z-coordinates of the
virtual cameras are computed by the same procedure, estimating a cubic spline
Ψz(x) spanning the x-z plane.

Two-Pass Rendering We have prepared all the graphics components including
the foreground/background geometries GF and GB, the virtual viewpoints V,
and the foreground and background textures TF and TB in addition to the
alpha masks MF for the foreground object. For a target virtual viewpoint Vk,
we first retrieve the real camera Cm having the minimum distance to Vk. We
adopt a two-pass rendering approach that draws the background object and the
foreground object separately and blends the two images by a generated alpha
matte. The procedure of rendering the background starts from unprojecting
texture T on geometry g from the perspective of the real camera C. The scene
from the target viewpoint Vk is then rendered. Rendering the foreground object
is performed similarly, but it further outputs an alpha matte of the foreground
object by warping the binary mask M from the view of C to Vk. Since we use a
geometry proxy GF , which is the very rough approximation for the real geometry
of the object, the alpha matte is necessary to refine the rough rendering, not in
the model space but the image space. As mentioned earlier, the final output
frame is produced via alpha blending of two intermediate images. We iterate the
rendering procedure for all virtual cameras in V.

4 Results

We conducted experiments on our view synthesis workflow using eight Google
Nexus 5X mobile phones. Our server is equipped with Intel Core i7-3770 CPU
with 32 GB memory and NVIDIA GeForce GTX 970 GPU. We took images of
a scene in 1440×1080 resolution, but they were scaled to 800×600 when trans-
mitting to the server for both computational and communicational efficiency.

Novel View Synthesis Given the accurately synchronized mobile devices, we
generated synthetic views using our view synthesis method. In Figure 5, we
present interpolated novel views (b) between two real camera views, shown in
Images (a) and (c). These novel views in Column (b) were created to enable
the bullet-time effect along the virtual camera path automatically. Image (d)
presents a point cloud with real camera frustums. The two rightmost camera
frustums correspond to two real views shown in (a) and (c), respectively. Images
(e) and (f) reveal intermediate geometry proxies for projective camera mapping
and an alpha map for foreground segmentation yielding the foreground image
(g), which is rendered on top of the inpainted background (h). Six cameras were
used to capture this scene.

Figure 6 compares our view synthesis of bullet-time photography to a state-
of-the-art method [21]. Wang et al. [21] adopt a piecewise planar stereo method [16]
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(a) Real view (left) (c) Real view (right) (b) In-between novel views 

(d) Point cloud with the real camera poses 

Real  
camera (a) 

Real  
camera (c) 

(e) Geometry proxies (g) Foreground (h) Inpainted background (f) Alpha matte 

(b)-1 (b)-2 (b)-3 (b)-4 

Fig. 5. Automated view interpolation for bullet-time photography along with a syn-
thetic view path. Between two real views (a) and (c), we created intermediate views
(b)s synthetically. Image (d) shows a point cloud with the real camera frustums, where
the two rightmost frustums show real views (a) and (c) in the upper row, respectively.
Images (e) – (h) present graphics components for the image-based rendering of a syn-
thetic view: geometric proxies, an alpha mask, a segmented foreground image, and an
inpainted background image.

(a) Wang et al. (b) Ours 
Fig. 6. Images (a) and (b) compare view interpolations of our method with Wang et
al.
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(a) Real view (b) Point cloud (c) Alpha matte (d) Novel view w/o inpainting (e) Novel view w/ inpainting 

Fig. 7. Column (a) shows an input image. Columns (b) and (c) demonstrate intermedi-
ate point clouds and corresponding alpha mattes. Columns (d) and (e) compare novel
view images with/without background inpainting. Column (e) presents a synthetic
novel view.

Wang et al. Ours 
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Fig. 8. Performance analysis for computing a bullet-time video. The table on the top
compares the time performance in seconds for each step of Wang et al. [21] and our
method. The pie charts (a) and (b) compare the proportion of computational times
spent for each step of both methods, respectively.
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to estimate depth information of the scene for depth image-based rendering.
While the planar stereo method is devised initially to estimate the depth of an
urban scene that comprises many planar objects such as walls, houses, build-
ings, etc., we found that it often fails for natural outdoor scenes and human
subjects, as shown in Figure 6(a). Therefore, Wang et al. present frequent DIBR
artifacts over rendering results due to erroneous depth estimation. In contrast,
our method outperforms the state-of-the-art method regarding DIBR rendering
artifacts.

Figure 7 shows additional results, where input real views, point clouds, alpha
mattes, and synthesized novel views are presented in each column. Columns (d)
and (e) compare the impact of our background inpainting. The inpainting process
of the background helps the novel views appear more natural and plausible
without requiring severe computational costs. Refer to the supplemental material
for more video results.

Performance Analysis Although our view synthesis is rendered on a mobile
device in an interactable time, we have to employ a server to perform heavy
computational pre-processing such as texture segmentation, bundle adjustment
for geometry, and view path generation to achieve interactive performance. We
evaluate a performance analysis on our system by measuring the running time
for each process to process a scene. Figure 8 compares the computational costs
of our method with Wang et al. [21]. The total running time for our method was
78.79 seconds (1 minute 18 seconds). In contrast, the state-of-the-art method
of Wang et al. took 4506.13 seconds (1 hour 15 minutes) for handling the same
scene. Note that our method is near the interactive time, which is about 57 times
faster than the other method. The most time-consuming step in our method is
the semantic segmentation part, which took 57.92 seconds; i.e., it accounts for
about 74 % of the total processing time. We believe that the bottleneck of the
segmentation step can be alleviated by substituting the current segmentation
method with a more efficient state-of-the-art method in the future.

Camera Synchronization To assess the accuracy of our synchronization, we ex-
perimented with taking synchronized images of a running stopwatch. The stop-
watch is capable of displaying time in milliseconds. Using eight mobile devices,
we performed ten trials to capture the synchronized images of the time on the
stopwatch. We demonstrate the results of the experiment in Figure 9. As a cri-
terion for the precision, we used the standard deviation of the sample times
captured in the synchronized images. Smaller standard deviation indicates less
error for synchronization. The average standard deviation for ten trials was only
15.77 milliseconds. For the fourth and sixth trials, the standard deviations were
virtually zero, meaning no errors.

5 Discussion and Conclusion

In summary, we have presented an automated casual view synthesis method that
bridges the gap between pervasive mobile computing and multiview photogra-
phy. Our method enables bullet-time photography of frozen-time animation on



Light-weight Novel View Synthesis for Casual Multiview Photography 11

18.34

26.73

16.02

0.00

18.13

0.00

19.31
17.68

23.15

18.39

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d 
de

vi
at

io
n 

(m
s)

Trial

Fig. 9. Synchronization results of ten trials using eight mobile devices. The vertical
axis shows the standard deviation of the captured time differences in milliseconds.
The horizontal axis represents the trial number. We had the perfect synchronization
of eight devices for the 4th and 6th trials. The average standard deviation was only
15.77 milliseconds.

wirelessly connected mobile devices in an interactable time. The current method
is implemented for still shots. The synthetic video navigation will be our future
work. The performance of our synthetic view rendering could be affected by the
accuracy of the CNN-based semantic segmentation algorithm [23] that we used.
An advanced segmentation method could improve results.
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