

Compact Snapshot Hyperspectral Imaging with Diffracted Rotation

Daniel S. Jeon[†] Seung-Hwan Baek[†] Shinyoung Yi[†] Qiang Fu* Xiong Dun* Wolfgang Heidrich* Min H. Kim[†]

Light and Color Imaging

Continuous spectra of light

Bayer pattern

Conventional RGB Camera

Red

Green

Blue

Hyperspectral Imaging

420nm	430nm	440nm	450nm	460nm
470nm	480nm	490nm	500nm	510nm
520nm	530nm	540nm	550nm	560nm
570nm	580nm	590nm	600nm	610nm
620nm	630nm	640nm	650nm	660nm

Wavelength: 420nm – 660nm

Goal

Our algorithm

Related Work: Multi-shot Hyperspectral Imaging

• Traditional hyperspectral camera requires multiple captures

Bandpass filter

LCTF (liquid crystal tunable filter)

Pushbroom (line scanning)

Unable to capture dynamic scenes

Related Work: Single-shot Hyperspectral Imaging

• Recently, single-shot hyperspectral cameras have been introduced

Computed Tomography Imaging Spectroscopy (CTIS)

Compressive Coded Aperture Spectral Imaging (CASSI)

Prism-Mask Multispectral Video Imaging System (PMVIS)

Too large form factor

Diffractive Optical Element (DOE)

Convex lens		Convex lens	DOE
	Control light field	Refraction	Diffraction
	Structure	Macro structure	Micro structure
DOE	Form factor	Thick	Flat
	Design custom PSF	Limited	Various PSF designed

Fresnel Lens

Fresnel lens has been used commonly for various imaging applications

Limitation of Existing Fresnel Lens

11

Original scene

Captured by Fresnel lens

Focused Defocused

Due to chromatic aberration

Fresnel Propagation with Different Wavelength

Fresnel Propagation with Different Wavelength

Focal length difference:

Blue > Green > Red

Our DOE: Phase Shift by

Our DOE: Phase Shift by Medium $\Delta \phi_h$

Path difference

- c: light speed
- η : refractive index
- $\Delta \eta_{\lambda}$: refractive index difference
- Δh : height difference
- $\Delta \phi_h$: phase shift by height

Path difference

- λ : target wavelength
- f: target focal length

Phase at radius r

 $r^{2} + f^{2} - f$

ľ

Constructive Interference Condition

$\bigwedge \phi_h + \bigwedge \phi_g = 2\pi n$

where *n* is some integer

Constructive Interference Condition

where *n* is some integer

Height Equation

 $n\lambda - \left(\sqrt{r^2 + f^2} - f\right)$ $\Delta h = -\frac{1}{2} \int dx + f dx +$ $\Delta\eta_\lambda$

where *n* is some integer

 $\lambda_{\max} \le \Delta h \le 0$ $\Delta\eta_{\lambda_{\max}}$

Our Design of the DOE Height Field

Our DOE Point Spread Function

Image plane distance 🦉

Our DOE: Spectrally-Varying PSF

* (DOE simulation spec.) 1um xy-resolution, 100nm height resolution in 16 steps

Our DOE: Spectrally-Varying PSF

Our PSF

420nm

Hyperspectral Imaging Formulation

Optimization Problem

Optimization Problem

• Using half-quadratic splitting (HQS)

$$(\hat{\mathbf{I}}, \hat{\mathbf{V}}) = \underset{\mathbf{I}, \mathbf{V}}{\operatorname{arg\,min}} \left\| \mathbf{J} - \mathbf{\Phi} \mathbf{I} \right\|_{2}^{2} + \varsigma \left\| \mathbf{V} - \mathbf{I} \right\|_{2}^{2} + R(\mathbf{V})$$

• The equation can be split into two subproblems

I-th half-quadratic splitting iteration

$$\mathbf{I}^{(l+1)} = \arg\min_{\mathbf{I}} \left\| \mathbf{J} - \mathbf{\Phi} \mathbf{I} \right\|_{2}^{2} + \varsigma \left\| \mathbf{V}^{(l)} - \mathbf{I} \right\|_{2}^{2}$$
(1)
$$\mathbf{V}^{(l+1)} = \arg\min_{\mathbf{V}} \varsigma \left\| \mathbf{V} - \mathbf{I}^{(l+1)} \right\|_{2}^{2} + R(\mathbf{V})$$
(2)

Iterative Optimization (Step 1)

• The first subproblem

$$\mathbf{I}^{(l+1)} = \underset{\mathbf{I}}{\operatorname{arg\,min}} \left\| \mathbf{J} - \mathbf{\Phi} \mathbf{I} \right\|_{2}^{2} + \varsigma \left\| \mathbf{V}^{(l)} - \mathbf{I} \right\|_{2}^{2} \qquad (1)$$

Solved by gradient descent

$$\mathbf{I}^{(l+1)} = \overline{\mathbf{\Phi}}\mathbf{I}^{(l)} + \varepsilon \mathbf{I}^{(0)} + \varepsilon \boldsymbol{\zeta} \mathbf{V}^{(l)}$$

where $\overline{\Phi} = \left[\left(1 - \varepsilon \varsigma \right) \mathbf{1} - \varepsilon \Phi^{\mathrm{T}} \Phi \right]$

auxiliary variable

Iterative Optimization (Step 2)

• The second subproblem

reformulated as

$$\mathbf{V}^{(l+1)} = \mathbf{S}\left(\mathbf{I}^{(l+1)}\right)$$

• where *S()* is a neural network function

Optimization-based Unrolled Network

%KAUST

KAIST

$$\mathbf{I}^{(l+1)} = \mathbf{\overline{\Phi}} \mathbf{I}^{(l)} + \varepsilon \mathbf{I}^{(0)} + \varepsilon \zeta \mathbf{V}^{(l)}$$

where $\mathbf{\overline{\Phi}} = [(1 - \varepsilon \zeta)\mathbf{1} - \varepsilon \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}]$
**where $\mathbf{\overline{\Phi}} = [(1 - \varepsilon \zeta)\mathbf{1} - \varepsilon \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}]$
or in the equation of the e**

30

U-net based Spatial-Spectral Prior Network

Datasets

Training dataset

- Harvard dataset [Chakrabarti and Zickler 2011]
- ICVL dataset [Arad and Ben-Shahar 2016]
- KAIST dataset [Choi et al. 2017]
- Augmentation: half/original/double resolution of 238 hyperspectral images (= 714 hyperspectral images in total)
- 30,000 patches of size 256 × 256 × 25 in total
- Gaussian noise with a standard deviation of 0.005
- Test dataset
 - 10 images extracted from the KAIST dataset beforehand

Spectral Calibration of Real PSF

KAUST

KAIST

420nm

420nm

Results

Comparison with Other Recon. Algorithms (sRGB visualization) AXX4' 42.24 GT - A.E. TVAL3 **ISTA-NET** Ours 1.0 **AXXA** Ground truth TVAL3 0.8 reflectance .0 .0 .5 .0 (PSNR/SSIM/SAM) (27.44dB/0.83/0.16) ***** 0.2 **Ours** (29.49dB/0.86/0.10) 1983 0.0 450 500 550 600 650 wavelength [nm] Spectral power distribution

Autoencoder (23.38dB/0.62/0.26) ISTA-NET (28.24dB/0.78/0.15)

Comparison with Other Recon. Algorithms

Ground truth (PSNR/SSIM/SAM)

TVAL3 (28.52dB/0.84/0.18)

Autoencoder (23.42dB/0.75/0.24) ISTA-NET (31.96dB/0.86/0.16)

Ours (33.93dB/0.92/0.11)

Comparison with Fresnel Lens

Ground truth (PSNR)

Green patch 1.0 0.8 0.6 0.4 0.2 0.0 450 500 550 600 650 wavelength [nm]

Fresnel (22.26dB)

Ours (30.25dB)

Real Scene Results

Input

Ground truth

Spectroradiometer SpectralScan PR-655

Our prototype

420nm 1 2

Reconstructed spectral image

Real Scene Results

Reconstructed spectral image 420nm

wavelength [nm]

Our prototype

Discussion: PSF Invariance

Depth invariance Incident angle invariance

Discussion: Depth Invariance

Discussion: Incident Angle Invariance

44

Limitation

thrive

45

Lack of edges

High-frequency illumination

Conclusion

• First diffraction-based hyperspectral imaging that consists of a single optical element and a bare sensor

 Diffractive imaging lens to achieve both imaging and dispersion with a single DOE

• End-to-end hyperspectral reconstruction network based on the unrolled architecture of an optimization procedure

Thank you!

Project website: http://vclab.kaist.ac.kr/siggraph2019/

