

DEEPFORMABLETAG: END-TO-END GENERATION AND RECOGNITION OF DEFORMABLE FIDUCIAL MARKERS

MUSTAFA B. YALDIZ, ANDREAS MEULEMAN, HYEONJOONG JANG, HYUNHO HA, MIN H. KIM

Motivation

DeepFormableTag

KAIST

VISUAL COMPUTING

111110000000000000 000000000001111111

00011111111111111111

Binary-square

- QR code [Denso Wave 1994],
- ARToolKit [Kato and Billinghurst1999], ARTag [Fiala 2005]
- AprilTag [Olson 2011], ArUco [Munoz-Salinas 2012]

Previous Work

Planar and rigid surface assumption

KAIST VISUAL COMPUTING Lab Deformed surfaces, distortion, etc.

Previous Work

Binary-square

- QR code [Denso Wave 1994],
- ARToolKit [Kato and Billinghurst1999], ARTag [Fiala 2005]
- AprilTag [Olson 2011], ArUco [Munoz-Salinas 2012]

Learning-based –

 Learnable visual markers [Grinchuk 2016]

- E2E-Tag [Peace 2020]

Previous Work

Binary-square

- QR code [Denso Wave 1994],
- ARToolKit [Kato and Billinghurst1999], ARTag [Fiala 2005]
- AprilTag [Olson 2011], ArUco [Munoz-Salinas 2012]

Learning-based

 Learnable visual markers [Grinchuk 2016]

- E2E-Tag [Peace 2020]

Dot pattern DRDM [Uchiyama and Marchand 2011]

- DDCM [Narita 2016]

Classical Marker Systems

DeepFormableTag - Overview

- Rich appearance
- Marker similarity (localization)
- Marker uniqueness (classification/decoding)

Imaging Simulator

- Differentiable
- High photorealism
- Imaging artifacts

Imaging Simulator: Rendering (1/5)

- Fast rendering
- Small domain gap with real-world

(b) Our photorealistic rendering

Imaging Simulator: Rendering (2/5)

Imaging Simulator: Rendering (3/5)

Imaging Simulator: Rendering (4/5)

Final radiance

Imaging Simulator: Rendering (5/5)

Cook-Torrance specular term:

$$\frac{F}{\pi} \frac{DG}{(\vec{n} \cdot \vec{l})(\vec{n} \cdot \vec{v})}$$

F: Fresnel termD: Facet distribution functionG: Geometric attenuation factor

Imaging Simulator: Ablation Study

Trained with specified rendering method, tested on real-world

Imaging Simulator: Imaging Artifact Augmenter

Robustness against combination of various edge conditions

Imaging Simulator: Geometric Distortions

- Modified corners
- Internal sampling points

Deformation

Radial distortion

Perspective distortion

Training Dataset Rendered with Augmentations

Marker Detector (1/5)

- Efficiency
- Geometric invariance

Marker Detector: Backbone (2/5)

- Two-stage Faster RCNN
- VoVNet19-FPNLite

Marker Detector: Decoder Head (3/5)

Marker Detector: Corner Head (4/5)

Marker detector: Loss terms (5/5)

Results: Message Decoding Capability

Model	Mean decoding accuracy	Standard deviation	0-bit error	1-bit error
16 bits	99.998%	0.1143	99.97%	0.03%
36 bits	99.921%	0.7605	98.51%	0.75%
64 bits	99.558%	1.0787	80.39%	14.0%

Results: Message Decoding Capability

Model	Mean decoding accuracy	Standard deviation	0-bit error	1-bit error
16 bits	99.998%	0.1143	99.97%	0.03%
36 bits	99.921%	0.7605	98.51%	0.75%
64 bits	99.558%	1.0787	80.39%	14.0%

Results: Message Decoding Capability

Model	Mean decoding accuracy	Standard deviation	0-bit error	1-bit error
16 bits	99.998%	0.1143	99.97%	0.03%
36 bits	99.921%	0.7605	98.51%	0.75%
64 bits	99.558%	1.0787	80.39%	14.0%

Results: Comparison on Flat Surfaces

Results: Comparison on Flat Surfaces

Model	AP	FP-Rate	FPS
ArUco [2012]	50.19	0.0000	31
AprilTag [2016]	57.58	0.0000	19
E2ETag [2020]	00.04	0.8625	13
Ours	60.84	0.0000	29

KAIST

VISUAL COMPUTING Lab

Results: Comparison on Flat Surfaces

Model	AP	FP-Rate	FPS	Aruco — AprilTag — E2E — Ours
ArUco [2012]	50.19	0.0000	31	Y using 75-
AprilTag [2016]	57.58	0.0000	19	
E2ETag [2020]	00.04	0.8625	13	
Ours	60.84	0.0000	29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Results: Deformation (1/4)

Results: Deformation (1/4)

VISUAL COMPUTING

Results: Deformation (2/4)

© 2021 SIGGRAPH. ALL RIGHTS RESERVED. 34

Results: Deformation (3/4)

Deformation with motion blur (0.5x speed)

Marker detection results (AprilTag / ours)

Results: Deformation (4/4)

Results: Deformation (4/4)

Applications: Structured Light 3D Imaging

Structured light 3D imaging with camera motion

Input frames with our markers

3D points

Applications: Motion Capture

Our marker detection Human motion capture

Applications: Augmented Reality

Smooth camera motion

Marker detection results (AprilTag / ours)

Limitations and Future Work

Conclusions

- Deformable fiducial marker system
 - End-to-end optimization of the marker generator and detector networks via photorealistic differentiable rendering
 - Deformed fiducial markers with strong motion blur
 - Large number of messages can be embedded
- Various applications demonstrated
 - Structured light 3D imaging
 - Human motion capture
 - Augmented reality rendering

THANK YOU

43