

SPARSE ELLIPSOMETRY: PORTABLE ACQUISITION OF POLARIMETRIC SVBRDF AND SHAPE WITH UNSTRUCTURED FLASH PHOTOGRAPHY

INSEUNG HWANG, DANIEL S. JEON, ADOLFO MUÑOZ, DIEGO GUTIERREZ, XIN TONG, MIN H. KIM

Polarization

• Light is an electro-magnetic wave

Polarization

- Light is an electro-magnetic wave
- The direction of oscillation is perpendicular to the direction of the wave

Polarization

- Light is an electro-magnetic wave
- The direction of oscillation is perpendicular to the direction of the wave
 - Polarization is the direction of the electric field

Related work

Reflection separation

[Ghosh et al. '08]

Shape acquisition

[Kadambi et al. '15]

Depth acquisition

[Baek et al. '16] Dehazing

[Liu et al. '15] Image editing

[Ma et al. '07]

[Zhao et al. '20]

Stokes vector and Mueller matrix

Ellipsometry

7

Ellipsometry

$I = \mathbf{a}$ M p

Challenges for polarimetric BRDF acquisition

Benchtop system [Baek et al. '20]

2-5 days captures

Uniform material and sphere shape

Our approach

Hand-held device

Our approach

3D Muller matrix

Novel view and lighting rendering

Polarimetric reflectance model

P PBRDF:
$$\mathbf{S}_o = \mathbf{P}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o)\mathbf{S}_i$$

Our pBRDF includes 3 types of reflection s – Diffuse

- Specular
- Single scattering

$\mathbf{P} = \mathbf{P}^d + \mathbf{P}^s + \mathbf{P}^{ss}$

Diffuse reflectance model

Fresnel transmission

$$\mathbf{P}^{d} = \mathbf{C}_{n \to o} \mathbf{F}^{T} \mathbf{D} \mathbf{F}^{T} \mathbf{C}_{i \to n}$$

Coordinate conversion Depolarization

- Diffuse reflection includes
 - transmission (air \rightarrow medium)
 - depolarization by multiple scattering
 - transmission (medium \rightarrow air)

Specular reflectance model

Fresnel reflection

$$\mathbf{P}^{s} = \kappa_{s} \mathbf{C}_{h \to o} \mathbf{F}^{R} \mathbf{C}_{i \to h}$$

S_i n h S^ooo k air

- Coordinate conversion $\kappa_s : \text{specular reflection term } \kappa_s = \rho_s \frac{DG}{4(\mathbf{n} \cdot \boldsymbol{\omega}_i)(\mathbf{n} \cdot \boldsymbol{\omega}_o)}$
 - Specular reflection is described as
 - a single-bounce reflection

Single scattering model

Fresnel transmission (air→media)

$$\mathbf{P}^{SS} = r_{SS} \mathbf{C}_{n \to o} \mathbf{F}^T \mathbf{C}_{h' \to n} \mathbf{F}^{R'} \mathbf{C}_{n \to h'} \mathbf{F}^T \mathbf{C}_{i \to n}$$

S_i n h air S^{ss}o Coordinate conversion Fresnel reflection (media→particle)

 r_{ss} : single scattering BRDF

•

- Single scattering includes
 - transmission (air \rightarrow medium)
 - scattering reflection
 - transmission (medium \rightarrow air)

Practical single scattering model

Fresnel reflection

$$\mathbf{P}^{ss} = \kappa_{ss} \mathbf{C}_{n \to o} \mathbf{F}^{R} \mathbf{C}_{i \to n}$$

Coordinate conversion κ_{ss} : single scattering reflection term $\kappa_{ss} = \rho_{ss} \frac{DG}{4(\mathbf{n} \cdot \boldsymbol{\omega}_i)(\mathbf{n} \cdot \boldsymbol{\omega}_o)}$

- S_i n h air S^{ss}o
 - Practical single scattering light transport
 - The similar polarization state with specular
 - Independent roughness
 - Colored albedo

Our capture device

- Geometry: near-coaxial setup
 - ~3.5° angle difference
- Input: 100-300 flash photographs

Coaxial acquisition system

• The Mueller matrix model can be simplified in the coaxial system

$$\mathbf{P} \approx \begin{bmatrix} \rho_d T^+ T^+ + \kappa_s R^+ + \kappa_{ss} R^+ & -\rho_d T^- T^+ \beta \\ -\rho_d T^- T^+ \beta \\ -\rho_d T^- T^+ \alpha \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \rho_d T^- T^+ \alpha \\ \rho_d T^- T^+ \alpha \\ 0 \\ -\kappa_s R^+ - \kappa_{ss} R^+ \\ 0 \\ -\kappa_s R^+ - \kappa_{ss} R^+ \end{bmatrix}$$

Diffuse shading Specular and single scattering Diffuse polarization (sine) Diffuse polarization (cosine)

Coaxial acquisition system

• The Mueller matrix model can be simplified in the coaxial system

$$\mathbf{P} \approx \begin{bmatrix} \rho_d T^+ T^+ + \kappa_s R^+ + \kappa_{ss} R^+ & -\rho_d T^- T^+ \beta \\ -\rho_d T^- T^+ \beta \\ -\rho_d T^- T^+ \alpha & 0 \end{bmatrix} \begin{bmatrix} \rho_d T^- T^+ \alpha \\ 0 \\ -\kappa_s R^+ - \kappa_{ss} R^+ \end{bmatrix}$$

Diffuse shading Specular and single scattering Diffuse polarization (sine) Diffuse polarization (cosine)

Coaxial acquisition system

• The Mueller matrix model can be simplified in the coaxial system

DS: Diffuse shading component $DP\alpha$: Diffuse polarization sine component SS: Specular & single scattering component $DP\beta$: Diffuse polarization cosine component

Polarization camera input

- 4 different linear polarization images in a single shot
- Captured input:

Diffuse shading $I^{d} = DS = 2I_{90}$ Diffuse polarization (sine) $I^{\alpha} = DP\alpha = I_{135} - I_{45}$

Specular & single scattering + diffuse polarization (cosine) $I^{s} = SS - DP\beta = I_{0} - I_{90}$

Optimization overview

Optimizing polarimetric BRDF and normal

$$\min_{\eta,\sigma_s,\sigma_{ss},\rho_s,\rho_{ss},\rho_d,\mathbf{n}} \left(\lambda_1 \mathbf{L}_{\psi} + \lambda_2 \mathbf{L}_d + \lambda_3 \mathbf{L}_s + \lambda_4 \mathbf{L}_{\phi} \right)$$

 L_d : diffuse loss

 L_w : refractive index loss L_s : specular and single scattering loss ϕ : normal loss

Refractive index loss

Refractive index loss function ightarrow

$$\mathbf{L}_{\psi} = \sum_{k=1}^{K} w_{k}^{\nu} \left(\hat{\psi} \left(\eta, \theta_{o,k} \right) - \psi_{k} \right)^{2}$$

Estimated degree of polarization Observed degree of polarization

The degree of polarization (DoP) of the diffuse reflection depends on ullet

the refractive index and normal orientation

[Baek et al. '18]

1.3

.6 q

80°

26

Diffuse loss

• Comparing the predicted diffuse image with the captured image

$$\mathbf{L}_{d} = \sum_{k=1}^{K} w_{k}^{v} \left(\hat{I}_{k}^{d} \left(\mathbf{n}, \rho_{d}, \eta \right) - I_{k}^{d} \right)^{2}$$

Estimated diffuse shading Observed diffuse shading

Specular and single-scattering loss

• We apply a specular augmentation strategy with virtual samples

Observed specular and single scattering

Virtual specular and single scattering observation

$$\mathbf{L}_{s} = \sum_{k=1}^{K} w_{k}^{v} \left(\hat{I}_{k}^{s} - I_{k}^{s}\right)^{2} + \lambda_{g} \sum_{m=1}^{M} w_{m}^{a} \left(\hat{I}_{m}^{s} - \tilde{I}_{m}^{s}\right)^{2}$$

Estimated specular and single scattering

Normal loss

• Azimuth angle information of normal from diffuse polarization

$$\mathbf{L}_{\phi} = \sum_{k=1}^{K} 2w_k^p \left(1 - \cos\left(2\hat{\phi}_{o,k} - 2\phi_{I,k}\right) \right)$$

Azimuth angle of estimated normal Observed azimuth angle from diffuse polarization

Validation

pBRDF model comparison

• Comparison between pBRDF measurements and our proposed models

pBRDF measurement dataset: PEEK

Single scattering validation

Measurement		
Our model		
	Unpolarized intensity M (0,0)	Cross-polarized diffuse I ^d

Single scattering validation

Single scattering, specular and diffuse polarization

$$I^{\alpha} = DP\alpha = I_{135} - I_{45}$$

Diffuse polarization

$$I^s = SS - DP\beta = I_0 - I_{90}$$

DS: Diffuse shading component SS: Specular & single scattering component DP α : Diffuse polarization sine component DP β : Diffuse polarization cosine component

Single scattering validation

 $DP \beta$: Diffuse polarization cosine component

D

$$P \approx \begin{bmatrix} DS + SS & -DP\beta & DP\alpha \\ -DP\beta & SS & 0 \\ -DP\alpha & 0 & -SS \end{bmatrix} q_{0} q_$$

Material	$\eta_{measure}$	η_{ours}	error
White billiard	1.463	1.465	0.10%
Red billiard	1.485	1.476	0.61%
Green billiard	1.503	1.476	1.80%
POM	1.462	1.457	0.34%
Fake pearl	2.295	2.244	2.22%
Yellow silicone	1.303	1.337	2.61%
PEEK	1.663	1.617	2.77%
Average			1.49%

Specular augmentation validation

Specular observations and fitted specular lobes

Results

Comparison

Our results: real-world objects

Geometry

3D Mueller matrix

Environment rendering

Our results: real-world objects

Geometry

3D Mueller matrix

Environment rendering

Our results: real-world objects

Geometry

3D Mueller matrix

Environment rendering

Single scattering comparison

Discussion

• No circular polarization

- Only for dielectric materials
- Noise in dark surfaces in DoP calculation

Conclusion

- Sparse ellipsometry for 3D objects
 - Estimate both shape and polarimetric BRDF
 - Acquisition takes only a few minutes
- A new pBRDF model
 - Describe diffuse, specular and single scattering

• Project page : <u>http://vclab.kaist.ac.kr/siggraph2022p1/</u>

Thank you

Inseung Hwang Daniel S. Jeon Adolfo Muñoz Diego Gutierrez Xin Tong Min H. Kim

