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Figure 1: (a) We present birefractive stereo for single-shot depth imaging, by simply placing a birefringent crystal in front of a camera. (b)
Birefringent materials such as calcite produce a double-refraction phenomenon. (c) We rely on this effect and develop a novel birefringent
imaging model to leverage the disparity information encoded in the captured images, obtaining (d) depth.

Abstract

We propose a novel birefractive depth acquisition method, which
allows for single-shot depth imaging by just placing a birefringent
material in front of the lens. While most transmissive materials
present a single refractive index per wavelength, birefringent crys-
tals like calcite posses two, resulting in a double refraction effect.
We develop an imaging model that leverages this phenomenon and
the information contained in the ordinary and the extraordinary re-
fracted rays, providing an effective formulation of the geometric
relationship between scene depth and double refraction. To handle
the inherent ambiguity of having two sources of information over-
lapped in a single image, we define and combine two different cost
volume functions. We additionally present a novel calibration tech-
nique for birefringence, carefully analyze and validate our model,
and demonstrate the usefulness of our approach with several image-
editing applications.

Keywords: refractive stereo, depth, double refraction, birefrin-
gence

Concepts: •Computing methodologies→ Computational pho-
tography; 3D imaging;

1 Introduction

Depth estimation from images is very useful for many applications
besides computer graphics, like robotics, autonomous vehicles, or
augmented reality. Common binocular/multiview stereo imaging

†Corresponding author e-mail: minhkim@kaist.ac.kr
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers, December 05-08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2980221

techniques require at least two cameras to estimate disparity, re-
sulting in additional cost and a large form factor. Many alternative
approaches requiring a single camera have been proposed; how-
ever, they all present several shortcomings or require additional
hardware, hindering their applicability in every-day scenarios. For
instance, some methods rely on structured light [Zhang and Na-
yar 2006], while bi-prism stereo [Lee and Kweon 2000] reduces
the effective sensor resolution by half; this trade-off between spa-
tial resolution and the number of captured images is also one of
the main limitations of light-field depth imaging. Reflection-based
stereo [Yano et al. 2010] requires that the scene be imaged through
a double-sided half-mirror plate, slanted at the right angle. Depth-
from-defocus techniques [Levin et al. 2007; Bando et al. 2008]
require a shallow depth-of-field to increase depth sensitivity, and
can suffer from depth ambiguity due to low-frequency cues. Exist-
ing refraction-based stereo techniques [Gao and Ahuja 2006; Chen
et al. 2013; Baek and Kim 2015; Baek and Kim 2016] are suitable
for static scenes only, since they require multiple input images.

In this paper, we propose birefractive stereo, a novel technique for
single-shot depth estimation from double refraction. This is eas-
ily achieved by simply placing a birefringent material in front of
the lens of any conventional camera. It is therefore cheap, has a
minimal impact on the form factor of the setup, does not sacrifice
spatial resolution, introduces no visible image degradation (as our
analysis and results show), and is readily useful for personal pho-
tography, allowing users to capture images without the burden of
careful setups or complex additional hardware.

Birefringence is an optical property of some anisotropic, transmis-
sive materials; an incident light ray is split into two rays (called
ordinary and extraordinary), causing a double refraction [see Fig-
ure 1(b)]; we offer a more detail description in Section 2. This phe-
nomenon allows us to capture a single image, containing overlap-
ping information of the scene [shown in Figure 1(c)], from which
depth information can be inferred [see Figure 1(d)].

However, there are many technical challenges that need to be over-
come, to be able to estimate depth from double refraction: first,
while some works have focused on birefringence for computer
graphics simulations [Tannenbaum et al. 1994; Guy and Soler
2004; Weidlich and Wilkie 2008; Latorre et al. 2012], a descrip-
tion of the birefringence imaging model suitable for stereo imaging
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does not exist. Although the geometric relationship between depth
and pixel displacement through ordinary refraction has been well
studied in traditional refractive stereo [Gao and Ahuja 2006], this
model no longer works for birefractive stereo, given the particular
characteristics of the extraordinary refraction. The relationship be-
tween depth and pixel displacement by double refraction has not
been formalized yet. Moreover, existing refractive stereo calibra-
tion methods do not work in the case of birefringent materials. Last,
traditional refractive stereo looks for correspondences in a pair of
images (direct and refracted) [Baek and Kim 2016; Baek and Kim
2015]; however, since birefringence superimposes the two refracted
images into a single one, a new correspondence search strategy
must be devised, capable of handling overlapping information in
the image.

To tackle these challenges, we introduce the following main con-
tributions:

• We formulate a novel birefractive image formation model, in-
troducing the walk-off plane to formally account for extraordi-
nary refraction, which makes the mapping from extraordinary
disparity to depth possible, enabling single-shot birefractive
stereo.

• We introduce a novel edge-aware correspondence search al-
gorithm in the gradient domain, which allows us to determine
disparity in a superimposed double-refraction image.

• We propose a novel calibration method for birefractive stereo,
which determines not only the physical orientation of the
medium, but also the intrinsic orientation of its optical axis
in screen coordinates.

• We show the advantages of our approach compared to other
state-of-art methods, and demonstrate several applications in-
cluding refocusing, anaglyph generation, automatic object
segmentation, and depth-aware image editing.

Nonetheless, our system is not free from limitations. To capture
double refraction across an image, a smaller aperture is preferable,
which could lower the level of exposure. Our birefractive stereo
utilizes gradients of double refraction. A lower ISO setting or addi-
tional denoising might be preferable. Despite this, we show that our
birefractive stereo method acquires depth from a single-shot image
in a wide range of scenarios, as demonstrated in the results.

2 Background

Bartholin discovered the phenomenon of double refraction in trans-
missive, birefringent crystals [Hecht 2002]. This is due to the mi-
croscopic structure of the medium (the ordered arrangement of the
atoms in the lattice), and the different binding forces of molecules
along axes. Figure 2 depicts this phenomenon: When the incoming
ray li arrives at a plane surface, it splits into two rays, called ordi-
nary (o-ray) lro and extraordinary (e-ray) lre. These two rays become
polarized in orthogonal directions, even in the case of an incoherent
incident ray, a phenomenon that was first reported by Fresnel. The
o-ray lro travels on the plane of incidence through the medium, and
its direction cosines are determined by Snell’s law [Hecht 2002];
however, the e-ray lre walks off1 from the plane of incidence, and
its direction cosines can no longer be determined by Snell’s law. In-
stead, the direction of the e-ray is determined by the orientation of
the birefringent crystal’s optical axes, and can be calculated by ap-
plying Huygens’s principle and the Maxwell equations [Avendaño-
Alejo et al. 2002; Weidlich and Wilkie 2008; Latorre et al. 2012],
or phase-matching modeling [Liang 1990].

1The walk-off angle is the separation between the o-ray and the e-ray in
the crystal.
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Figure 2: Light transport in a birefringent crystal. When the inci-
dent ray li arrives at the surface, it splits into the ordinary (o-ray) lro
and the extraordinary (e-ray) lre rays. The e-ray vector lre walks off
from the plane of incidence at angle θ̂, causing a double refraction.

Most crystals are optically anisotropic, meaning that the propaga-
tion characteristics of a wave inside them depend on the direction
of propagation. This is explained by the directional dependency of
the dielectric permittivity tensor, which relates the electric field and
the dielectric displacement vectors (this tensor becomes a scalar for
isotropic media); its three orthogonal axes are called the principal
axes of the crystal. If two of the three components are equal (the
material has two different binding forces along the three axes), the
crystal is uniaxial; otherwise, the crystal is biaxial (the material has
three different binding forces along the three axes). The interested
reader can refer to other sources in the optics field for an in-depth
analysis of the phenomenon [Hecht 2002], or a more detailed ex-
planation adapted to computer graphics [Weidlich and Wilkie 2008;
Latorre et al. 2012].

3 Related Work

Simulating Birefringence A few works in computer graphics
have dealt with the simulation of birefringent materials. Tannen-
baum et al. [1994] proposed a matrix-based formulation for uniax-
ial crystals, deriving formulas for the propagation of the extraordi-
nary ray. A real-time implementation was presented by Guy and
Soler [2004], based on careful approximations focused on the ren-
dering of gems. Weidlich and Wilkie [2008] integrate uniaxial bire-
fringence into a conventional ray tracer, and derive the complete set
of formulas needed to simulate the effect in a physically accurate
way. Later, Latorre et al. [2012] present the first solution to deal
with biaxial crystals, relying on numerical approximations.

Capture and Display Some practical imaging applications of
birefringent crystals have been proposed in the literature. Zalevsky
and Ben-Yaish [2007] extended the depth-of-field (DOF) of a cam-
era using a birefringent material carefully placed between the lens
and the sensor, while Tsai and Brady [2013] introduced a hyper-
spectral imager that makes use of two birefringent slabs, along with
a coded aperture. On the display side, Shestak et al. [2015] recently
devised a stereo television system which requires glasses made of
birefringent materials. To the best of our knowledge, ours is the
first method that leverages birefringence to estimate depth from a
single shot.

Reflective Stereo The acquisition setup for reflective stereo re-
quires that the scene being captured be observed through a double-
sided half-mirror plate, positioned at a slanted angle [Shimizu and
Okutomi 2006; Yano et al. 2010]. However, imaging both the front
and rear reflections requires a large angle between the mirror’s nor-
mal and the camera’s view direction. This results in a large form
factor, and a careful scene setup, which is impractical for daily use;
our method overcomes these limitations.

Refractive Stereo Refractive stereo estimates depth from dis-
placement of either a pair of direct/refracted images or a pair of
refracted images using different media [Chen et al. 2013; Gao and
Ahuja 2006; Baek and Kim 2015; Baek and Kim 2016]. Since
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the two images cannot be captured in a single shot, the method is
limited to static scenes. On the contrary, our birefractive stereo
technique takes into account the displacement in a superimposed
image caused by the refracted o-ray and e-ray on the same image,
removing the need for multiple shots.

Single-Shot Depth Single-shot depth imaging allows to capture
depth from scenes. Several applications have been proposed in the
fields of computer vision and robotics. Lee and Kweon [2000] in-
troduced a binocular stereo method; they use a bi-prism to introduce
disparity between two images, splitting the camera imaging space
in two. Unfortunately, the image resolution is reduced by half ac-
cordingly. In addition, spectral dispersion by the prism blurs images
severely, hindering correspondence search. This degrades depth ac-
curacy since feature points cannot be correctly identified [Li and
Wang 2009]. Levin et al. [2007] introduced a principled coded aper-
ture approach to infer depth from defocus, while Bando et al. [2008]
later proposed a color-coded aperture to produce different blur ker-
nels or displacements in the three color channels. Subsequent test-
ing of cross correlations across color channels allows for depth es-
timation. These aperture-based methods require a large aperture to
achieve a shallow depth of field, in order to improve depth sensi-
tivity, and the approach can also suffer from depth ambiguity due
to low-frequency cues of blurriness. Shi et al. [2015] obtain depth
from small-scale defocus blur, an information that can be weak-
ened if the image is downsampled. Also, the method cannot resolve
edge smoothness ambiguity: a blurred edge may come from a la-
tent sharp edge affected by defocus blur, or a smoother edge with
potentially no blur. Different from these methods, our birefractive
stereo technique does not require any camera modifications, nor a
particular scene setup. Instead of analyzing edge blur, it leverages
the information from a double-refraction image produced by simply
placing a flat, birefractive optical filter in front of any conventional
camera, avoiding the problem of edge smoothness ambiguity.

4 Overview

Different from ordinary refractive stereo, our goal is to leverage the
displacement between the o-ray and the e-ray, to estimate depth z.
This will allow us to enable singlet-shot refractive stereo, with-
out needing to capture an additional direct image. Our birefractive
stereo method consists of: (1) a formal description of our image for-
mation model, which allows us to establish the relationship between
o- and e-ray disparity, and depth; (2) a method to obtain depth in-
formation from a single image, where ordinary and extraordinary
information appear superimposed, based on our gradient-domain
search and dual derivation of matching cost volumes; and (3) a
novel calibration method for the birefractive material and our imag-
ing setup, to obtain the parameters of our correspondence model.
These steps will be described in the three following sections.

5 Birefractive Image Formation Model

Figure 3 presents a schematic view of our birefractive image for-
mation model, based on the background introduced in Section 2.
Table 1 describes all the symbols and notation used in this section,
while Table 2 enumerates each plane and its vectors, to provide a
quick reference for the readers. In the traditional (non-refractive)
model, a scene point Ps is projected to point Pd on the sensor
through the optical centerO of the lens (black line). When a refrac-
tive medium is placed in front of the lens, Ps will instead project
through O to a new point Po, according to Snell’s law (green line).
We denote as P 1

o and P 2
o the first and second intersections with

the surfaces of the refractive medium, respectively. Since vec-
tors PsP 1

o , P 1
o P 2

o , and P 2
o Po lie on the plane of incidence, the

entire o-ray transport remains on this plane of incidence.
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O Optical center (pin-hole) of a camera
f Focal length of a lens
ηo o-ray refractive index of the biref. medium
ηe e-ray refractive index of the biref. medium
a Optical axis of the biref. medium
n Normal vector of the plane surface of the biref. medium
t Thickness of the biref. medium
E Essential point defined by the biref. medium’s normal
E′ Back-projected essential point to the scene plane
Ps 3D scene point
Pd Projected pixel position without the biref. medium

o-
ra

y
(S

ec
tio

n
5.

1)

Po o-ray pixel position onto the image plane
P ′o Back-projected point of Po onto the scene plane
P 1
o Point where o-ray is at the rear face of the biref. medium
P 2
o Point where o-ray is at the front face of the biref. medium
r′o Distance between Ps and P ′o
ro o-disparity; Distance between Pd and Po
do Walk-off length of o-ray
θpo Angle between EPo and PoO
θio Angle between PoO and EO

e-
ra

y
(S

ec
tio

n
5.

2)

Pe e-ray pixel position onto the image plane
P ′e Back-projected point of Pe onto the scene plane
P 1
e Point where e-ray is at the rear face of the biref. medium
P 2
e Point where e-ray is at the front face of the biref. medium
r′e Distance between Ps and P ′e
re e-disparity; Distance between Pd and Pe
de Walk-off length of e-ray
θpe Angle between PdPe and PeO
θie Angle between PeO and EO
θde Angle between PeE and PePd
θme Angle between P 1

e P 2
e and P 2

e P 3
e

Table 1: Symbols and notation used in the paper.

Plane Vectors belonging to the plane

Plane of

incidence

PsP 1
o , P 1

o P 2
o , P 2

o Po, PoPd, P ′oPs,

PoE, P ′oO, PoO, PoE, OE, d̂o

Walk-off

plane

PsP 1
e , P 1

e P 2
e , P 2

e Pe, PeO, PePd,

P ′eP , P ′eO, d̂e

Scene plane P ′oP , P ′ePs

Sensor plane PePd, PoPd, PoE, PeE, d̂o, d̂e, npe , epe

Table 2: Planes and vectors in our image formation model.

If we place instead a birefringent medium, two rays from Ps will
pass through O and reach the sensor at different positions: the or-
dinary ray at Po (same as before, since it also follows Snell’s law),
and the extraordinary ray at Pe (purple line). Note that our imag-
ing model differs from other birefringence studies [Weidlich and
Wilkie 2008; Latorre et al. 2012] in that we concern ourselves with
the refracted rays that go through O. Thus our model includes two
different incoming rays PsP 1

o and PsP 1
e , instead of one single in-

cident ray from which the o-ray and the e-ray are produced. This
allows us to define the walk-off plane, where vectors PsP 1

e , P 1
e P 2

e ,
and P 2

e Pe lie; this is a key aspect of our model, since the entire
e-ray transport now remains on this plane; the walk-off plane in
extraordinary refraction is analogous in this regard to the plane of
incidence for ordinary refraction.

Another important feature in our birefractive image formation
model is the essential point E on the sensor plane, defined as the
point where the vector n normal to the surface of the refracting
medium intersects the sensor plane via the optical center O; note
that n does not necessarily coincide with the optical axis of the lens
in our method; therefore the essential point E is mainly determined
by the orientation of the transmissive medium (this point will be ob-
tained through calibration in Section 7). Points Pd, Po and E lie on
the so-called essential line, while Pe does not. This property will
later allow us to narrow down the search range of correspondences.
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Figure 3: (a) Cross-section schematic diagram of our image formation model with double refraction (see the text for the full details). In the
absence of a refractive medium, scene point Ps is directly projected to Pd on the sensor plane. Introducing a birefringent medium, stereo rays
from Ps are projected to Po for o-ray and Pe for e-ray on the sensor. The first row (b) – (d) shows close-up diagrams for o-ray light transport
at the scene plane, the medium and the sensor plane, respectively. Note that the entire o-ray transport remains on the plane of incidence
(Section 5.1). The second row (e) – (g) presents similar diagrams for e-ray light transport (Section 5.2). By defining the walk-off plane, we
ensure that the entire e-ray transport remains on such plane, which makes the mapping from e-ray disparity to depth possible.

We seek to define two functions relating the captured ordinary
and extraordinary ray intersections on the sensor, Po and Pe, with
depth: ψo→e (Po, z) = Pe, and ψe→o (Pe, z) = Po. For that,
we first need to derive separate expressions for the o-ray (e-ray),
that describe the relationship between Po (Pe), Pd, and z. These
expressions will then be combined to remove the Pd dependency
(since our single-shot approach does not require a direct capture
without the birefringent medium, so Pd is never imaged), and used
to estimate depth in Section 6.

For the sake of completeness, we first briefly introduce how to infer
depth from the disparity of the ordinary ray, a well-known tech-
nique that allows for two-shot, depth estimation methods [Gao and
Ahuja 2006; Chen et al. 2013]. We will then develop depth from
the extraordinary refraction, and show how to combine the two dif-
ferent sources of information present in a double-refraction image.
Dependencies on known parameters such as the optical axis a, nor-
mal orientation n, and the refractive indices for the o-ray ηo, and
the e-ray ηe will be solved after calibration (Section 7).

5.1 Ordinary Ray Disparity to Depth

As we have seen, scene point Ps projects to Po through O in the
presence of a refractive medium. The distance ro = |PoPd| on
the sensor plane is called the (ordinary) refractive disparity, which
depends on the thickness t, and the index of refraction ηo of the
medium. Let P ′o be a virtual projection of Po through O on the
scene plane, assuming no refraction. Given the focal length f , we
can estimate the depth z of point Ps as [Chen et al. 2013]:

z =
(
r′o/ro

)
f, (1)

where r′o = |P ′oPs| is defined on the scene plane. Note that since
we deal with ordinary refraction, both ro and r′o lie on the plane
of incidence. From basic trigonometry we have r′o = do/sin θ

p
o ,

where θpo = ](P ′oO,P ′oPs) = ](PoO,PoE). do is called the lateral
displacement of the o-ray [Hecht 2002], and is computed as the
distance between the two parallel vectors PoP 2

o and P 1
o Ps:

do =
(

1−
√

1−sin2 θio
η2o−sin2 θio

)
t sin θio ,

where θio = ](OE,OPo). Equation (1) defines ro as a function
of depth z. We can now define a function ψo→d, which provides
a mapping between the captured o-ray position Po and ro, and the
direct ray position Pd, as

ψo→d (Po, z) ≡ Po + ro (z) d̂o = Pd, (2)

where d̂o is the unit vector corresponding to PoE, defined on the
essential line.

Different from traditional depth from refractive stereo algorithms,
we do not know Pd, since no direct image is taken in our approach.
In the following, we will derive a similar function ψe→d for the
extraordinary ray. Combining both functions ψo→d and ψe→d will
allow us to bypass the need for a second (direct) capture, enabling
single-shot birefractive stereo.

5.2 Extraordinary Ray Disparity to Depth

While the o-ray follows Snell’s law, the e-ray walks off from the
plane of incidence following Huygens’s principle and Maxwell’s
equations. A key concept in our derivation is therefore the walk-off
plane.

Walk-off Plane The walk-off plane is defined by the incident
ray PsP 1

e , and the outgoing e-ray P 2
e Pe through O so that the en-

tire e-ray transport remains on the plane. Also belonging to that
plane, we find vectors PePd on the sensor plane, and PeO. Since
we do not have a direct capture to obtain Pd, we use P 2

e P 1
e instead

to obtain the normal ne of the walk-off plane; given PeO, the direc-
tion cosines of the e-ray defining P 2

e P 1
e can be obtained by phase

matching, using Liang’s method [1990] (described in detail in the
supplemental material).

Depth from E-ray Disparity Similar to the o-ray disparity to depth
derivation, we define re = |PePd| on the sensor plane, as the ex-
traordinary ray disparity, which depends on the medium’s thick-
ness t, and its index of extraordinary refraction ηe. Let P ′e be a
virtual projection of Pe through O on the scene plane, assuming no
refraction; from the two triangles 4(PsOP

′
e) and 4(PdOPe) on
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the walk-off plane, we can define a relationship between depth z
and e-ray disparity re as follows:

z = (r′e/re)f, (3)

where r′e = |P ′ePs| is defined on the scene plane, and both re and r′e
lie on the walk-off plane. Trigonometric relations give us r′e =
de/sin θ

p
e , where θpe = ](P ′eO,P ′ePs) = ](PeO,PePd). We

call de the lateral displacement of the e-ray, and is computed as
the distance between the two parallel vectors PeP 2

e and P 1
e Ps. To

obtain de, we define a triangle 4(P 1
e P

2
e P

3
e ) [see Figure 3(f)]; the

angle θme =](P 1
e P 2

e , P 2
e P 3

e ) can be obtained from the normalized
dot product of P 2

e P 1
e and PeO, then de = |P 2

e P 1
e | sin θme . The

angle θpe can be obtained from the normalized dot product of PeO
and PePd from two triangles 4(PsOP

′
e) and 4(PdOPe) on the

walk-off plane [see Figures 3(e) and (g)].

From Equation (3), we can define a function ψe→d mapping the
captured e-ray position Pe and re, and the direct ray position Pd as

ψe→d (Pe, z) ≡ Pe + re (z) d̂e = Pd, (4)

E
dP

eP

d
eθ

Sensor plane 

en
p
en

  ee
p

W
alk-off plane    d̂e

Figure 4: Calculation of d̂e

[closeup view of Figure 3(g)].

where d̂e is the unit vector cor-
responding to PePd, defined
on the intersection line be-
tween the walk-off and the sen-
sor plane. d̂e defines the direc-
tion of e-ray disparity. How-
ever, different from the o-ray
derivation, we cannot rely on
the essential point E to de-
fine d̂e, since Pe, Pd, and E
are not co-aligned.

Instead, d̂e can be obtained
from the geometric relation-
ship between the walk-off plane’s normal ne and PeE (see Fig-
ure 4). First, we project ne onto the sensor plane, obtaining npe . We
then define a unit vector epe , perpendicular to PeE on the sensor
plane. From the normalized dot product of npe and epe , we obtain
θde = ](PePd, PeE). This angle allows us to determine the unit
vector d̂e corresponding to PePd, by rotating the normalized vec-
tor of PeE with θde -degrees around point Pe on the sensor plane.
The sign of npe ×PeE determines the direction of rotation, i.e., the
positive sign indicates clockwise rotation, and vice versa.

5.3 Combining the two functions

Up to this point, we have obtained two analytic mapping functions
[Equations (2) and (4)] defining the relationship between depth z,
and o- and e-ray disparities, respectively. However, they both de-
pend on Pd, which is not captured with our single-shot approach.
To get rid of this dependency, we first invert these two functions to
yield: ψd→o (Pd, z) = Po and ψd→e (Pd, z) = Pe. These map-
ping functions include a combination of multiple sinusoidal func-
tions defining the o-/e-ray relationship, which makes them expen-
sive to calculate analytically. Therefore, we instead pre-compute
two tables storing values for Po and Pe respectively, for each
pair of input parameters Pd and z. Since the two functions now
depend on the same input parameters, we combine the two ta-
bles into one, describing the four-dimensional mapping function
ψd→o,e (Pd, z) = (Po, Pe), from which the following two recipro-
cal functions can be obtained:{

ψo→e (Po, z) = Pe,
ψe→o (Pe, z) = Po.

(5)

This correspondence model will be later used to calculate o- and
e-ray disparity for each depth.

6 Depth from a Double-Refraction Image

Existing depth-from-stereo algorithms start with a set of potential z
candidates, and the goal is to assign a depth value to each pixel P ,
given its left (x, y) and right (x′, y′) views. The relationship be-
tween corresponding pixel coordinates in both views is given by
the epipolar line equation x′ = x + r (with y′ = y), where r in-
dicates disparity, which is inversely proportional to depth d. A cost
volume function C(P, z) is defined, which indicates how well two
corresponding pixels match, using this equation; in other words,
it stores the cost of assigning each depth candidate to each pixel.
To improve performance, an edge-aware filtering process, so-called
cost aggregation, is required for every depth slice in C.

Different from traditional stereo algorithms, there are two main
challenges when estimating correspondences in double-refraction
images. First, since both the ordinary and the extraordinary images
are combined in a single one, corresponding pixels may have dif-
ferent colors due to overlapping [see Figure 5(a)]; this means that
typically used correspondence algorithms based on color similarity
cannot be applied. Instead, we propose a sparse correspondence
search in the gradient domain. The second problem has to do with
the inherent ambiguity in the double refraction, which makes it dif-
ficult to tell the ordinary from the extraordinary images. We over-
come this by defining two different per-pixel, cost volume functions
for double refraction Co and Ce, and searching through the depth
candidates using the mapping functions ψo→e and ψe→o [Equa-
tion (5)]. We then propagate our sparse estimated depths to the
complete image. This is described in the following paragraphs.

Gradient-Domain Search We capture a superimposed image Y ,
which is the sum of two stereo images from the o- and e-ray, Xo
and Xe. Note that one image is the displaced version of the other.
We first calculate the gradient vectors ∂Y along the x and y direc-
tions2, and define a map Φ made of all pixels P with a gradient
magnitude |∂Y (P ) |2 > ε, where | |2 represents the l2-norm. Es-
timating depth on these pixels by selectively using distinct gradi-
ents is helpful to mitigate the effects of noise. We empirically set
ε = 0.01 for all the results shown in this paper. Only these detected
pixels P ∈ Φ have a correspondence cue on Y ; we therefore esti-
mate depth only on Φ, and propagate the results to every pixel in Y
later.

The detected gradients ∂Y(P ) on an edge pixel could belong to
either Xo or Xe; when P belongs to Xo, its corresponding edge
pixel should belong to Xe, and vice versa. However, as shown
in Figure 5(b), these gradients may overlap when the orientation
of an edge coincides with the direction of disparity in the double-
refraction image, making it impossible to assign to Xo or Xe. To
make our depth estimation robust, we exclude from Φ all pixels,
whose gradient direction is close to the direction of disparity. We
take a conservative approach and set a threshold angle of ±45 de-
grees [see Figure 5(c)]. Moreover, the gradient magnitudes of cor-
responding pixels from double refraction are virtually the same (ex-
cept at grazing angles on metallic surfaces, as discussed in Sec-
tion 11); this is illustrated in Figures 6(a) and (b). This observation
enables us to test whether two given pixels form a valid correspon-
dence pair by comparing their gradient magnitudes. Our matching
cost functions (described in the following paragraphs) will compare
potential stereo correspondences in this gradient domain, rather

2To handle noise, we employ the kernel operator
1
8
[−1,−2,−1; 0, 0, 0; 1, 2, 1] for x-gradients [Barron and Malik

2013], and its transposed version for y-gradients.
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Figure 5: Overall pipeline of our depth estimation. (a) Captured double-refraction image, which contains overlapped disparity information.
This makes searching for correspondences a challenging task. (b) Gradient map reveals the positions of corresponding points more clearly,
although there is some ambiguity where gradient directions coincide with disparity directions. (c) Ambiguous gradients are removed. (d)
Estimated sparse depth without cost aggregation. (e) Estimated sparse depth with cost aggregation. (f) A propagated dense depth map.
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Figure 6: Schematic diagrams of (a) two separate images, and
(b) an overlapped image of double refraction. (a) The o-ray (blue
line) and e-ray images (yellow line) have approximately the same
per-pixel intensity (except at grazing angles on metallic surfaces),
with one image being the translated version of the other. (b) The
overlapped images consequently share the same gradient for corre-
sponding pixels.

than in color space, leveraging the special characteristics of dou-
ble refraction.

Dual Matching Cost Volumes At this point, we still cannot dis-
ambiguate whether an edge pixel in Φ belongs to the ordinary Xo,
or to the extraordinary refraction image Xe. We therefore calcu-
late two matching cost functions for all gradient pixels, considering
both options, as:

Co (P, z) = |∂Y (P )− ∂Y (ψo→e (P, z))|1 ,
Ce (P, z) = |∂Y (P )− ∂Y (ψe→o (P, z))|1 .

Cost function Co (P, z) evaluates the matching costs of pixel P on
the o-ray image Xo for each depth z, finding its corresponding e-
ray disparity using ψo→e; on the other hand, Ce (P, z) evaluates
the matching costs of P on Xe at each z, using ψe→o. To obtain
these matching costs, we calculate the l1-norm of the difference be-
tween the two gradient vectors. We then disambiguate the nature of
the refraction by selecting the cost function that yields the smallest
error for all depth candidates z∀:

C (P, z) =

{
Co (P, z) , if minCo (P, z∀) 6 minCe (P, z∀)

Ce (P, z) , otherwise.

We calculate this cost function for the red, green and blue channels
separately, and add them to obtain the total cost. Since the matching
cost function is a per-pixel operator, estimated matching costs in an
image tend to be sparse and noisy. We therefore apply an edge-
aware filter [Yang 2012] to each depth level in the cost volume C
(this is called cost aggregation in traditional stereo), to achieve ro-
bust performance [see Figures 5(d) and (e)]. We finally select the

most plausible depth estimate Z for each pixel P as:

Z (P ) = arg min
z

C (P, z) ,

and propagate these values to the rest of the image using Matting
Laplacian optimization [Levin et al. 2004] [see Figure 5(f)].

7 Calibration of Birefringence

Since no established calibration method for birefractive stereo
imaging exists, we present here a simple but practical method. To
determine the intrinsic properties of the camera, such as its pro-
jection matrix and lens distortion coefficients, we can choose any
existing camera calibration method; in this work we follow the
checkerboard-based method of Zhang [2000]. In the following, we
describe how to calibrate the optical properties of the birefringent
material, in particular its essential point, as well as its optical axis.
Note that this calibration process only needs to be performed once.

Essential Point In our method, the normal n of the birefractive
medium can be oriented in any direction. Determining the orien-
tation of n is equivalent to determining the location of E on the
sensor plane. To do so, we first take three different images of a
checkerboard as input: a direct image without the medium, plus
two linearly-polarized images with the medium, to image the o-ray
(point Po on the sensor) and the e-ray (Pe), respectively [see Fig-
ure 7(a)]. To correctly identify ordinary from extraordinary points,
we follow traditional refractive stereo techniques, and leverage the
fact that the essential lines of o-rays should converge to E [Chen
et al. 2013] on the sensor plane; e-rays, on the contrary, do not
converge in general except for very particular geometric relation-
ships. We therefore superimpose a pair of our checkerboard im-
ages (direct, plus each one with the refractive medium, separately)
and connect corresponding points to elucidate which image con-
tains the ordinary or the extraordinary refractions. In particular, in
order to estimate the coordinates of the essential pointE, we define
the N connecting lines (N=77 in our implementation) as implicit
functions li = { (x, y)| aix+ biy + ci = 0}, and solve a linear
system with N equations using least-squares approximation. We
measure line convergence by evaluating the total variation of the
essential-line convergence, calculating the error of the optimization
as
∑
i∈{1...N} |aiEx + biEy − ci|, where E = [Ex, Ey]ᵀ lies on

the sensor plane. The smaller error (about half in our experiments)
indicates the o-ray image, which in turn yields the coordinates ofE.

Optical Axis Commercial off-the-shelf uniaxial crystals are cali-
brated, and their optical axis of birefringence is provided. However,
for birefractive stereo, this optical axis needs to be calibrated with
respect to the camera coordinates.
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Figure 7: (a) Our calibration setup for birefringence. We capture
three different images of a direct, o-ray and e-ray images. (b) & (c)
After finding the optical axis a, we obtain the reconstructed posi-
tions of Pd from Po and Pe (see text for details). Our experiment
shows an average of just ∼0.5 pixel misalignment.

We therefore devise a novel calibration method, using again the
three images of a checkerboard previously obtained to calibrate E.
We first extract the position of each corner on the checkerboard for
the direct, o-ray, and e-ray images. Let Pd, Po and Pe be the posi-
tions of corresponding pixels for a given corner on the three images,
respectively. We can estimate depth z using Equation (1) for the o-
ray correspondence between Pd and Po, since the essential point E
has already been calibrated. We now find out the optical axis of the
birefringent medium a, by parameterizing ψe→d with the optical
axis a, resulting in ψe→d (Pe, z;a); this function reconstructs the
position of the direct ray from the known values of Pe and z, with
an unknown variable a. Since we know the ground truth position
of the direct ray Pd, we can search for the optimal value of a that
minimizes the error as:

min
a

∑
{Pd,Pe}∈Π

|Pd − ψe→d (Pe, z;a)|2, (6)

where Π is the set of corresponding pairs of Pe and Pd for every
corner point. We solve this optimization problem with a constrained
nonlinear minimization solver [Waltz et al. 2006]. The average re-
construction error is ∼0.5 pixel for each corner as shown in Fig-
ure 7.

8 Analysis and Validation

In this section we analyze and evaluate the performance of all the
components in our birefractive stereo imaging system.

Calcite Crystal Calcite is a popular birefringent uniaxial crystal,
which shows significant birefringence. It is an ideal material for
our imaging system, given its clear transparency. Figure 8(a) shows
its transmittance ratio, which increases rapidly from approximately
60% at 400 nm, to a stable 90% across most visible wavelengths.
Figure 8(b) presents the indices of refraction for the o-ray and the
e-ray, ηo and ηe, respectively; ηo ranges from 1.65 to 1.70 while
ηe remains more constant at ∼1.48 in the visible spectrum. Fig-
ures 8(c) and (d) provide a side-by-side comparison of the color
difference between two images, captured with and without the cal-
cite crystal. Despite the lower transmittance of blue light, they show
very minor color differences (note that the apparent horizontal blur
in (c) is due to the double refraction effect). Figure 8(e) quanti-
tatively compares these color differences using the CIE u′v′ chro-
maticity diagram, showing a very accurate match (the average color
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Figure 8: (a) Transmittance ratio across the visible spectrum for
calcite, reaching 90% across most visible wavelengths. (b) Refrac-
tive indices ηo and ηe for calcite (with a difference of about 0.17 –
0.20). (c) & (d) Photographs of a Color Checker target with and
without the crystal, showing good color consistency. (e) Color dif-
ferences of the two images. The average color difference is only
∼0.0016 in the CIE u′v′ chromaticity space.
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Figure 9: A Thorlab slant edge target was captured (a) to deter-
mine the PSFs of o-ray (c) and e-ray (d) in double refraction [(b)
shows the direct image for comparison purposes]. The Gaussian
PSFs are estimated from the slanted edges in the red boxes.

difference is only ∼0.0016). We did not experience any pleochro-
ism with the calcite crystal.

Sharpness in Double Refraction We evaluate the crystal’s im-
pact on image sharpness by measuring the point spread functions
(PSFs) of the individual o-ray and e-ray. For that purpose, we first
capture a Thorlab slant edge target (R2L2S2P) with and without
the crystal, as well as through a linear polarizer to isolate the ordi-
nary and the extraordinary refractions, and then estimate the PSFs
of the red, green and blue channels for the different images [Burns
2000] (see Figure 9). The per-channel standard deviations are very
low for the three images (1.37, 1.32, 1.38 for red, 1.20, 1.13, 1.08
for green, and 1.06, 0.99, 1.08 for blue). While the PSFs without
the crystal are reasonably symmetric, the per-channel PSFs of the
o-ray and the e-ray images present a shift, due to the wavelength-
dependent indices of refraction shown in Figure 8(b). The estimated
shifts for the red- and blue-channel PSFs with respect to the green
channel are 0.03,−0.06 for the direct image, 0.28, 0.02 for the o-
ray, and 0.58,−0.31 for the e-ray. The color shift is smaller than
half a pixel, so we can safely ignore the effects of chromatic disper-
sion in our model.

Crystal Parameters Here we synthetically analyze the impact of
the different parameters of the crystal and the camera on depth reso-
lution. In these experiments, we vary a specific parameter for each
plot, while fixing others in the configuration of our prototype. A
45-degree-cut calcite (internal optical axis: 45 degrees) is placed
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Figure 10: We evaluate the impact of the optical properties of the crystal on the depth resolution (pixel disparity) in birefractive stereo,
including (a) refractive indices, (b) the internal optical axis of the crystal when installed along with the optical axis of the camera and (c)
when tilted at an angle of 45 degrees with respect to the camera, and (d) crystal thickness. In addition, we also evaluate (e) the impact of the
focal length of the lens, and (f) the pixel pitch of the camera.
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Figure 11: Validation of our image formation model using the Ze-
max simulation software, for a depth range of 40 – 100 cm (optical
axis a = [−0.18, 0.43, 0.88]T, and tilting the calcite crystal at an
angle of 45 degrees along the y-axis). Our image formation shows
a strong agreement in both the positions (top) and the disparity
(bottom) of the two refracted rays.

along the optical axis of the camera (pixel pitch: 4.7µm) equipped
with a 24 mm lens. First, we analyze the choice of calcite as the
birefringent medium. There are other birefringent crystals com-
mercially available with a high transmission, which could be used
in principle. Figure 10(a) shows disparity using calcite, barium bo-
rate, and quartz. Since larger birefringence increases depth resolu-
tion, calcite becomes the optimal choice given its larger difference
between its two indices of refraction (0.17 for calcite, 0.13 for bar-
ium borate, 0.01 for quartz). We compare three optical axes: 45,
60 and 90 degrees by placing the crystal aligned with the camera
[Figure 10(b)], and tilted at an angle of 45 degrees [Figure 10(c)].
Regardless of the angle between the crystal and the camera, a 45-
degree optical axis provides the highest depth resolution. Note that
a crystal with a 90-degree optical axis loses its depth discrimina-
tion power when aligned with the camera. Figure 10(d) shows the
effect of thickness. For the three thicknesses tested, the thickest
medium achieves higher depth resolution by displacing the o- and
e-rays more.

Imaging Parameters In addition to the crystal parameters, we an-
alyze the effect of the focal length and pixel pitch on depth resolu-
tion. Note that the distance between the birefringent medium and

the center of projection does not affect depth resolution, since the
incoming and outgoing rays at the medium have the same direc-
tion due to the parallelism between the surfaces of the medium, as
shown in Figure 3(a). Focal length is linearly correlated with depth
resolution [Equation (3)] as shown in Figure 10(e). As for the sen-
sor resolution, since we rely on pixel displacement to distinguish
depth, more pixels lead to increased depth resolution, as shown in
Figure 10(f).

Model Validation Last, we synthetically validate our proposed im-
age formation model using the Zemax ray simulation software, pop-
ularly used in optics. Given a pixel on the image plane, our model
yields pixel positions Po and Pe for the o- and e-rays on the sensor
plane. We explore a set of depth candidates ranging from 40 cm to
100 cm, and compare the resulting disparities with the results ob-
tained from Zemax. This comparison is plotted in Figure 11, show-
ing a strong agreement between our model and the professional op-
tics software.

9 Results

We employed two different calcite crystals of the same size
(25×25×15 mm), but with different optical axes of 45 and
90 degrees respectively. For the 45-degree-cut calcite, we place
the crystal right in front of the lens compactly, so that the crystal’s
normal is aligned with the camera’s optical axis, as shown in Fig-
ure 1(a). For the 90-degree-cut calcite, the crystal is slanted at an
angle of 45 degrees with respect to the camera’s optical axis to re-
tain enough disparity, as shown in Figure 10(c). We use a Nikon
D7000 camera to capture linear RGB images at a resolution of
4928×3264 (pixel pitch: 4.7µm). Either a Nikon 24 mm lens or
a CoastalOpt apochromatic lens of 60 mm are used, depending on
the depth range of the scene, with a fixed aperture size of f /11 in
general. Our Matlab and C++ implementation runs on an Intel i7
3.40 GHz with 32 GB RAM without GPU acceleration. Geomet-
ric calibration takes approximately two seconds, excluding capture
times, while building the birefractive disparity tables takes about a
minute. As for depth estimation, it takes a little over two minutes,
including all the steps: edge extraction (10 s), computation of the
matching costs (55 s), cost aggregation (50 s), and depth propaga-
tion (25 s). In the following we show our final results, compared
to other state-of-the-art techniques, as well as applications for refo-
cusing, anaglyph generation, background-foreground segmentation
and recoloring, and depth-aware image compositing.
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Figure 12: Top: Comparison with other single-shot depth imag-
ing methods: (a) Our method, (b) Chakrabarti and Zickler [2012],
and (c) Lytro light-field camera. Bottom: Our method also pro-
duces good results compared with two-shot stereo methods: (d)
Our method, (e) Chen et at. refractive stereo [2013], and (f)
Hirschmuller binocular stereo [2005].
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Figure 13: Comparison of our birefringence image formation
model with the double-reflection model of Yano et al. [2010]. (a) In-
put double-refraction image. (b) Result using our model. (c) Result
using the double-reflection model.

Comparison with Other Approaches We first compare our
method with other single-shot approaches: a depth-from-defocus
(DfD) method [Chakrabarti and Zickler 2012], and a light-field
camera (Lytro Illum) [Figures 12(a) – (c)]. The DfD method suf-
fers from low accuracy due to edge smoothness ambiguity (b). The
light-field camera (c) produces better results than DfD, although the
spatial resolution needs to be lowered significantly to accommodate
the increased angular resolution.

In Figures 12(d) – (f), we additionally compare our results (d) with
other traditional methods that require at least two shots: refractive
stereo [Chen et al. 2013] (e), and binocular stereo [Hirschmuller
2005] (f). Despite relying on a single-shot, the depth quality of our
method is highly competitive compared to two-shot stereo methods.

Compared to reflective stereo [Yano et al. 2010], our technique
does not require a large form factor for the imaging setup. While
Yano’s work approximates the linear projection of continuously at-
tenuated images using a Taylor expansion, our method calculates
dual-matching cost volumes in the gradient domain, accounting for
the physical nature of birefringence (Section 6). We nevertheless
test if the imaging model in reflective stereo could be used with our
double-refraction image; as Figure 13 demonstrates, our birefrin-
gence image formation model produces superior results.

Depth of Field The performance of birefractive stereo is lim-
ited by defocus blur, which can degrade the double refraction ef-
fect. Figure 14 compares depth maps of a scene by varying the
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Figure 14: The impact of the aperture size on depth estimation.
(a) & (b) Captures with small apertures, f /22 and f /11, can esti-
mate depth in the range of 40 cm to 160 cm successfully, (c) & (d)
while captures with larger apertures f /5.6 and f /2.8 fail as double
refraction is damaged by blur.

(e) ISO 1600 with denoising(c) ISO 100

Double refraction

500

800

1100

1400

[mm]

650

950

1250

1550

(d) ISO 800 with denoising

(b) ISO 1600 (a) ISO 800 

Figure 15: The impact of noise on depth estimation: (a) & (b) Se-
vere noise in high ISOs leads to suboptimal depth estimation; on
the other hand, (c) a low ISO yields better performance due to the
reliable matching between pixel gradients. (d) & (e) To mitigate the
effect of noise, we can apply a simple denoising algorithm, which
leads to significantly improved results.

f -number. Small apertures, such as f /22 and f /11, retain this dou-
ble refraction, allowing us to recover depth in the range of 40 cm
to 160 cm. However, larger apertures of f /5.6 and f /2.8 damage
double refraction by blur, due to the shallow depth of field. To over-
come this limitation, we could combine depth-from-defocus tech-
niques with our method.

Image Noise We investigate the impact of noise on depth estima-
tion. Figure 15 compares depth maps estimated by varying the ISO,
i.e., the shutter speed is adjusted to have the same exposure levels
when changing the ISO. While lower ISOs allow reliable depth es-
timates, higher ISOs lead to suboptimal results. We can mitigate
this problem by simply applying a 5 × 5 median filter to the noisy
inputs before computing correspondences.

10 Applications

Refocusing Figure 17 shows a refocusing application. We first es-
timate a depth map from a double-refraction image using the model
presented in this paper. Our image formation allows us to build a set
of deconvolution kernels for each depth; an example is shown in the
inset, consisting of the two point spread functions for the o-ray and
the e-ray. By applying different blur kernels across the estimated
depths, we can refocus the captured photograph, as Figures 17(d)
and (e) show.
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Figure 16: Failure case: Inheriting the typical limitations of exist-
ing stereo algorithms, our method does not handle transparent or
highly reflective objects well, leading to wrong depth estimations.

(a) Double-refraction Image  

(d) Focus in back (e) Focus in front (c) Depth map 
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Figure 17: Refocusing application. From (a) the double-refraction
image, we restore (b) a sharp image using non-blind Lucy-
Richardson deconvolution with (c) the estimated depth map. An
example kernel is shown in the inset of (b). Using the kernels and
the depth map, we can perform synthetic refocusing, focusing on
(d) the red light, and on (e) the flowers.

Anaglyph Generation We generate stereo pairs from a single im-
age by using our depth estimation to render novel views, from
which we create an anaglyph (see Figure 18). The bottom row
shows the newly generated images, as well as close-up details.

Object Segmentation Using our estimated depth and the under-
lying color information, we can quickly perform object segmenta-
tion in images using existing techniques like grab-cut [Rother et al.
2004]. Figure 19 shows segmentation examples. Subsequent ef-
fects like the decolorization shown become straightforward.

Depth-Aware Image Compositing Our technique enables auto-
matic depth-aware image compositing, where occlusions are di-
rectly handled by our estimated depth without user intervention.
In Figure 20, we take the cat extracted in the previous example, and
automatically place it between the can and the teddy bear.

11 Discussion

We have presented a novel birefractive stereo method, based on
our image formation model for double refraction, which enables
single-shot depth acquisition in a cost-effective and compact form.
In addition, we have provided a novel calibration method for the in-

(a) Double refraction (b) Depth map (c) Anaglyph 3D photo 

(d) Left image (e) Right image (f) Close-up images  
Figure 18: 3D anaglyph image creation using our birefractive
stereo. Refer to the supplemental material for enlarged figures.

(a) Double refraction (b) Depth map (c) Decolorization
Figure 19: Automatic object segmentation and depth-aware decol-
orization using our technique.

(a) Double refraction (b) Depth map (c) Depth-aware 
image compositing

Figure 20: Occlusion-aware image compositing using our depth
map from birefractive stereo.

trinsic and extrinsic properties of birefringent crystals, and demon-
strated several useful image-editing applications that leverage our
estimated depth. Since calcite is a very transparent medium, plac-
ing it in front of the lens does not degrade visibly the captured im-
ages; neither light loss nor color variations become problematic;
nevertheless, we argue that this is an acceptable trade-off, given the
depth information we obtain and the ease of use of our approach.

We note that an image captured through a coded aperture with two
holes would be similar to our double-refraction image using a bire-
fractive medium. However, such coded aperture decreases light
throughput significantly, while the maximum disparity is limited
by the diameter of the aperture.

Limitations & Future Work There are still some interesting av-
enues for future work to improve our system: As most stereo algo-
rithms for depth acquisition, transparency and specular reflections
are difficult to handle leading to wrong depth estimations (see Fig-
ure 16). Our image formation model assumes that the refractive
medium consists of two planar parallel faces. Commercially avail-
able birefringent crystals comply sufficiently well with this require-
ment, as our results show; however, our method is not applicable to
arbitrary shapes. In addition, high-frequency repeated patterns on a
scene could be misinterpreted as double refraction effects resulting
in failure of depth estimation. Even though tabulation for mapping
correspondences is a sensible alternative, developing efficient an-
alytic formulas for the mapping functions remains as future work.
Combining depth-from-defocus with birefractive stereo could help
overcome the limitations due to the presence of blur. Also, despite
the good results obtained with denoising algorithms, noise-robust
correspondence matching techniques could be investigated. Last,
we assume that the intensities of the two refracted rays are the same,

10
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although differently polarized rays often show different levels of in-
tensity due to the Fresnel effect at grazing angles. Identifying such
intensity changes from our single image with overlapped refraction
information remains as an open, challenging problem.
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