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Figure 1: Overview of our system and results. (a) Our custom-built microscopic imager equipped with electrically-controlled LED lights
over a fabricated dome, for simultaneous microscale capture of reflectance and normals. (b) A $20 dollar bill captured by our system. We
show the zoomed-in letter T as captured by Johnson et al. [2011], and compared with our geometric result (note that we had to use a different
bill so an exact match is not possible). (c) Different from Johnson et al., we can simultaneously acquire reflectance information. We show a
comparison of microscopic photographs of two details of the bill, and our reconstructed results from factorized basis BRDFs.

Abstract

Acquiring microscale reflectance and normals is useful for digital
documentation and identification of real-world materials. However,
its simultaneous acquisition has rarely been explored due to the dif-
ficulties of combining both sources of information at such small
scale. In this paper, we capture both spatially-varying material ap-
pearance (diffuse, specular and roughness) and normals simulta-
neously at the microscale resolution. We design and build a micro-
scopic light dome with 374 LED lights over the hemisphere, specif-
ically tailored to the characteristics of microscopic imaging. This
allows us to achieve the highest resolution for such combined infor-
mation among current state-of-the-art acquisition systems. We thor-
oughly test and characterize our system, and provide microscopic
appearance measurements of a wide range of common materials,
as well as renderings of novel views to validate the applicability of
our captured data. Additional applications such as bi-scale material
editing from real-world samples are also demonstrated.
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1 Introduction

Accurate depiction of material appearance has seen great progress
in the last years [Dorsey et al. 2007; Weyrich et al. 2008; Kim et al.
2012; Kim et al. 2014]. It is well-known that the object-scale re-
flectance properties of materials are highly dependent on their un-
derlying microscale geometry. This observation gave rise to mi-
crofacet theory [Torrance and Sparrow 1967; Cook and Torrance
1982], which explains surface reflection phenomena according to
random irregularities at the microscale geometry level. Due to the
extremely small size of microfacets, their distributions have been
modeled statistically in existing works, instead of measuring them
directly.

Related work in graphics has focused on image-based measure-
ments of microscale geometry [Levoy et al. 2006; Johnson et al.
2011]. Dong et al. [2015] used a profilometer to measure micro-
scopic geometry of metallic surfaces, from which reflectance infor-
mation was predicted. Wang and Dana [2006] measured mesoscale
appearance with a spatial resolution of 0.1 mm. Recently, appear-
ance information from macro-scale photographs has been com-
bined with acquired micro-geometry for high quality cloth mod-
eling [Zhao et al. 2011]. In this paper, we aim to bridge the gap
between microscopic imaging and material appearance acquisition:
We present a system that allows for the simultaneous acquisition
of both reflectance and geometry at the microscale, which had not
yet been achieved due to the difficulties in combining both sources
of information at such scale. To achieve our goal, the following
challenges need to be overcome:
• Due to optics, the distance between the lens and the object

needs to be very small (smaller as the magnification ratio in-
creases). This constraint on the form factor poses a strong
limit when trying to accommodate additional space to support
any illumination structure. Moreover, one cannot directly ap-
ply traditional calibration algorithms involving a camera, a
target, and a light source.

• Traditional reflectance modeling based on 4D reflectometry
is not applicable to microscopic data. Since the depth of field
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(DoF) of microscopic imaging is extremely shallow at micron
scales, the microscopic imager should be oriented perpendicu-
lar to the surface to achieve in-focus images, effectively freez-
ing the view vector.

• Imperceptible mechanical vibrations during the capture pro-
cess, including vibrations from the shutter in a DLSR camera,
will hinder accurate measurements. This is particularly prob-
lematic in the microscopic system, since each pixel captures
information at sub-micron resolution, which is close to the
limit for reflectance acquisition by itself. Moreover, we rely
on high-dynamic-range (HDR) imaging to accurately obtain
specularity information, so vibrations will lead to registration
issues in the captured images.

To tackle these challenges, we design and introduce a custom-built
microscopic acquisition setup, which allows us to capture spatially-
varying bidirectional reflection and normal maps at microscale si-
multaneously, at the highest resolution (620 nm per pixel) among
existing systems. Note that although a commercial microscopic
imager (like the Canon macro lens we use) can acquire images at
micron resolution, corresponding geometry cannot be simultane-
ously captured at such scale. Our pipeline consists of two steps:
microscale image acquisition, followed by microscale reflectance
and normal estimation. Our custom-built hemispherical light dome,
accommodating a dense array of LED lights, enables us to produce
the structural light patterns of the spherical harmonics (SH) bases,
used to capture microgeometry, as well as acting as point lights for
measuring bidirectional reflectance. We first capture HDR images
using spherical harmonic patterns and point-wise lighting. Next, we
estimate SVBRDF and normals, in a joint optimization framework.
To model our captured micro-scale data, we adapt the traditional
Torrance-Sparrow model with a non-parametric normal distribution
function (NDF) term. Our results can then be used to render novel
views under different illuminations.

In summary, our main contributions are:
• A custom-built microscopic system for capturing microscale

SVBRDF and normals simultaneously. Reflectance informa-
tion is captured at the highest possible resolution, with geo-
metric information matching this resolution.

• A microscale material appearance representation using our
custom-built acquisition system. Moreover, the high com-
plexity of the captured data is reduced to a manageable form
suitable for editing, so that novel material appearances can be
easily created from real-world data.

• An experimental dataset of real-world microscopic material
appearance of a wide range of common materials, compared
to microscopic photographs (to be released with the paper).

Nonetheless, our system is not free from limitations. At the mi-
cron scale, light transport is often dominated by subsurface scat-
tering (SSS) in the thin outer layer. To allow for spatially-varying
SSS measurements at this scale, structured light patterns of high
frequency need to be used [Nayar et al. 2006]. To the best of our
knowledge, there is no microscale projector that can support high-
frequency patterns at micro-resolution within an area of approxi-
mately 1.5×1.5 mm. We therefore narrow our range of measured
materials to relatively opaque, and let our diffuse term indirectly
account for subsurface scattering in our reflectance model. De-
spite not explicitly capturing or modeling spatially-varying SSS, we
show that our reflectance model represents our observations well, as
demonstrated in the results and video.

The configuration of our system is described, along with the main
design decisions made, in Section 3. We then describe our algorith-
mic workflow to obtain microscale reflectance and normals through
alternating optimization in Section 4. The system is thoroughly

evaluated in Section 5, along with the presentation of our results.
We hope our work inspires future work and helps to gain a deeper
understanding of microscale material appearance, as well as to de-
velop new multiscale models and novel acquisition strategies.

2 Previous Work

2.1 Reflectance Acquisition Systems

Multiple Views with Multiple Lights These works attempt to
capture all combinations of the view and light directions [Lensch
et al. 2003; Marschner et al. 2005; Lawrence et al. 2006; Holroyd
et al. 2010] using a four-dimensional mechanical gantry. This ap-
proach allows to measure spatially varying reflectance of isotropic
or anisotropic materials, although it requires both an elaborate hard-
ware design and a long acquisition time. In contrast, the viewpoint
in microscopic imaging must remain perpendicular to the surface,
since the depth of field is extremely shallow. Moreover, since accu-
rate acquisition of specular highlights requires HDR information,
we need to avoid any vibration that would hinder microscale cap-
ture.

Fixed View with Multiple Lights Other methods measure re-
flectance and normals simultaneously by fixing the viewpoint and
capturing shading under multiple light directions, e.g., [Holroyd
et al. 2008; Ghosh et al. 2008; Alldrin et al. 2008]. These tech-
niques jointly optimize surface normals and the parameters of a re-
flectance model iteratively. Recently, Aittala et al. [2015] propose
a more efficient method for the particular case of texture-like mate-
rials, using just a flash/no-flash approach, while Dong et al. [2014]
rely on motion information to reproduce appearance at object scale.
Other systems use a linear light source to produce structured pat-
terns, allowing for more efficient acquisition of isotropic [Ren et al.
2011] and anisotropic materials [Chen et al. 2014; Wang et al.
2008]. Structured lighting with varying frequency has also been
proposed by Aittala et al. [2013] and Tunwattanapong et al. [2013].
Ghosh et al. [2009a] estimate per-pixel specular roughness using
polarized second-order spherical gradients, using three different
measurement setups. In later work, object-scale reflectance infor-
mation is captured using four different polarizing filters [Ghosh
et al. 2010]. Last, gray codes have been employed for acquiring
gloss and normals of mesostructures [Francken et al. 2009].

Our microscopic acquisition system relies on a fixed viewpoint
and electrically controlled point lights over a custom-built hemi-
sphere. Different from previous works, designed for object-scale
reflectance acquisition, we obtain both spatially varying reflectance
and normals at the microscale level. In particular, we utilize both
structured patterns and multiple-light reflection to acquire more
accurate normals and to factorize images into the effects due to
spatially-varying reflectance and normals.

Discrete Illumination Design Using discrete lights at fixed posi-
tions to measure reflectance has been attempted before [Marschner
et al. 2005; Gu et al. 2006; Ghosh et al. 2008; Ghosh et al. 2009b].
As these works focus on object-scale acquisition of reflectance and
normals, fundamental system designs and algorithmic solutions are
different from ours. Ghosh et al. [2008] captured normals and
a single BRDF per-region at object scale. Gu et al. [2006] and
Marschner et al. [2005] measure object-scale SVBRDFs, without
measuring geometry. Ghosh et al. [2009b] capture SVBRDF and
normals simultaneously, but their object-scale approach is not di-
rectly applicable to microscopic imaging. Recently, Graham et
al. [2013] introduced a novel microscale acquisition setup for hu-
man faces, based on photometric stereo, and fitting a parametric
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Figure 2: (a) Schematic overview of our system design. (b) The object holder (a small drawer) on its three-axis micro-stage, firmly screwed
to the optical table with vibration control. (c) The light dome is attached to the fixed structure of the object holder to avoid the need to
recalibrate the system when changing a sample. (d) The wired dome with 374 white LED lights (as seen from the bottom). (e) The macro lens
is positioned by the supporting structure on top of the light dome. (f) The structure tightly screwed to the table with vibration isolation.

BRDF model for each region of the face. As the authors found, their
method is insufficient to capture microscale SVBRDFs of general
materials, and their reconstruction method is tailored to the partic-
ular characteristics of skin.

2.2 Microscale Acquisition Systems

At the microscale, existing works either capture geometry or re-
flectance. Different from these, our work captures both microscale
spatially-varying reflectance and normals simultaneously.

Microscale Geometry The first works on microscale acquisi-
tion focused on shape-only approaches, for instance using shape-
from-focus or shape-from-specularity [Chen et al. 2006; Wang and
Dana 2006]. Levoy et al. [2006] captured microscale shape using
a light field lens array. Li and Li [2011] used photometric stereo
with an optical microscope to obtain micron scale surface structure.
However, their approach assumes Lambertian reflectance at the mi-
croscale. Recently, Johnson et al. [2011] also relied on photometric
stereo, and used an elastomeric sensor with a reflective skin made
of silver powder, to remove the influence of the optical properties
of the material. The system is therefore incapable of capturing col-
ors. Zhao et al. [2011] introduced micro CT imaging to capture
the micro geometry of fabric. They successfully captured the high
frequency details of fabric, which can then be used for rendering
using a volumetric appearance model. However, since the system’s
spatial resolution is higher than the frequency of visible light, it is
impossible to capture color information from this setup. Dong et
al. [2015] used a profilometer to measure the microscopic geome-
try of metallic surfaces, from which the reflectance of the surface is
predicted, but not measured.

Microscale Reflectance Very few works exist that attempt to
capture microscale material appearance. In conservation science,
Kotoula and Kyranoudi [2013] presented a preliminary attempt
to combine reflectance transformation imaging (RTI) with mi-
croscopy, yielding polynomial texture maps (PTM). The zenith
angle is only coarsely sampled, and the dependence on the light
direction is encoded as a low-order polynomial to a fixed view-
point [Malzbender et al. 2001], which is fundamentally different
from our goal of SVBRDF capture.

3 Microscopic Acquisition System

3.1 Design Decisions and System Description

Given the small scale of our acquisition setup, unique challenges
arise during its design. A key aspect is vibration control, since we

aim to capture an area smaller than a micron per pixel. Thus the
first decision is to avoid mechanical operations as much as possi-
ble, inevitable in existing four-dimensional gantries when moving
light and sensor arms [Lensch et al. 2003; Marschner et al. 2005;
Lawrence et al. 2006; Holroyd et al. 2010]; instead, we choose a
design based on a light dome structure, where lights are controlled
electronically. Moreover, since we need to capture multiple ex-
posures to build an HDR image with different light vectors, cap-
turing three thousand snapshots per object, we cannot use a high-
resolution DSLR camera for the imaging sensor, since its mechan-
ical shutter would introduce severe vibration; we choose to use a
color machine vision camera instead. Last, to further stabilize our
prototype, we build it on a custom-built block aluminum structure
to which all its components are tightly screwed, while placing the
entire system on a pneumatic vibration isolation table to eliminate
even slight ground vibrations.

Given these key design decisions, our final system is made up
of a three-axis micro-translation stage with a custom-built sample
holder, a custom-built LED light dome, a machine vision camera
equipped with a macro lens, and the global supporting structure.
Figure 2 shows a schematic view (a), as well as close-ups of the dif-
ferent components, and a view of the entire system. We provide de-
tailed descriptions of each component in the following paragraphs,
along with other specific challenges that need to be overcome, and
a discussion of the tradeoffs of our design.

XYZ Micro-Translation Stage As shown in Figure 2(b), we as-
sembled a custom XYZ micro-translation stage from two off-the-
shelf, micro-translation stages from Edmund Optics: one for XY
translation, and the other for Z translation controlling the focusing
distance, with micron resolution. The target sample is placed on a
3D-printed object holder, which slides in place and whose structure
is firmly screwed to the translation stage. This allows to change
samples without having to recalibrate the system (Section 3.2).

Light Dome As we have seen, our decision to design a micro light
dome is largely motivated by the need to eliminate all mechanical
vibrations during capture. This in turn forces us to accommodate its
design within the restricted space that the working distance of the
macro lens imposes, while packing as many lights as possible near
the zenith angle without casting shadows on the object being cap-
tured. Our light dome consists of a 3D-printed hemispherical struc-
ture with a radius of 40 mm, where we accommodate 374 white
LEDs (each with a 3 mm diameter) in dense 7-degree intervals,
as Figures 2(c) and (d) show. Their intensity is controlled by an
Arduino micro-controller and multiple TLC5940 chips, each pro-
viding 16 channels of 12-bit, pulse-width-modulation output. This
allows for 4095 luminance levels for each LED, and discrete spher-
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Figure 3: (a) An HDR capture of a chrome ball (φ=1 mm) for
calibrating the position of LED lights (all lights on). The yellow
circle indicates the outer boundary of the ball. (b) Schematic dia-
gram for calibrating the optical axis of the camera w.r.t. the stage
coordinates. (c) Estimated 3D positions of all 374 LEDs on the
hemisphere. White points show estimated positions and red crosses
indicate the reference positions from the 3D model data of the hemi-
sphere. Average angle difference is 0.68 degrees (std. dev.: 0.36).

ical harmonic illumination up to level 3 which will be used to cap-
ture geometry. Each LED is coupled with a plano-concave lens, to
approximate ideal point lights. Accordingly, we will assume each
LED to be a point light source when formulating light transport.

Camera and Macro Lens We use a trichromatic machine vision
camera, Pointgrey Grasshopper3 (GS3-U3-120S6C-C), with a res-
olution of 4240×2824 pixels (12MP, pixel pitch: 3.1µm). This
camera provides the highest resolution among cameras equipped
with an electronic global shutter, thus avoiding mechanical vibra-
tions. The camera is attached to a macro lens via a C-mount adapter.
We employ a commercial DSLR macro lens (Canon MP-E 65 mm
f/2.8), shown in Figure 2(e), with a magnification ratio up to 5:1.
The pixel resolution of our microscopic system is 620 nm per pixel.
Since the depth-of-field of our system is extremely shallow (less
than 100µm, see Table 1), we do not control the focus distance di-
rectly with the lens; instead, we use the micro-stage (Z axis) as ex-
plained above. Note that the working distance of the lens at the 5:1
magnification ratio is 41 mm, which imposes additional constraints
on the design of the light dome.

Supporting Structure As shown in Figure 2(f), the camera unit
is attached to a supporting structure made of black aluminum pro-
files. The overall dimensions are 80×40×100 cm. The structure
is firmly screwed on a commercial optical table (Daeil DVIO-B-
2410M-200T), equipped with pneumatic vibration isolation.

Discussion Some of the design decisions present some in-
evitable tradeoffs. First, the shallow depth of field forces the camera
and the lens to remain perpendicular to the sample holder (the ac-
tual axis is obtained through calibration). Second, the light dome
only allows for discrete incident light angles in 7-degree intervals.
Last, given the relatively large form factor of the lens (diameter:
60 mm) and its working distance, this results in an inevitable hole
at the top of the lighting dome, of ∼20 degrees around the zenith
axis, to allow the camera to capture images. We overcome these
hardware tradeoffs algorithmically, as described in Section 4.

3.2 Calibration and Registration

Geometric Calibration Our goal here is to calibrate the light po-
sitions and the actual camera axis with respect to the surface of the
object holder. However, the unavailability of suitable microscopic
planar patterns (such as checkered boards) renders the traditional
Zhang’s method [2000] invalid in our context. Our calibration fol-
lows three steps: We first calibrate the 374 lights positions with
respect to the camera; second, we calibrate the stage’s normal vec-
tor, also with respect to the camera. Finally, we convert the camera

200µm 2cm 
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Figure 4: Even a sample of Spectralon of 99% diffuse reflectance
presents clear specular peaks when captured at the microscale.
Moreover, the diffuse and specular patterns that arise do not cor-
respond to what would be expected when simply rendering the cap-
tured geometry.

view and all light vectors to the stage’s local coordinates. Each
pixel shares a common view vector, assuming orthographic projec-
tion since the captured area is very small (1.5×1.5 mm), using a
lens of 65 mm focal length.

For the first step, we employ a small, 1.0 mm diameter chrome ball
as a light probe with all lights on [see Figure 3(a)]. We capture HDR
images of the chrome ball under each light source (one light on, all
the rest off) and estimate each initial light vector îk according to the
mirror-reflection equation îk = 2(n̂k · ô)n̂k − ô, where ô is the
initial view vector [0, 0, 1]ᵀ in local camera coordinates, and n̂k is
the corresponding surface normal of the chrome ball at the brightest
pixel in camera coordinates, oriented toward the view vector ô. In
the second step, we find out the orientation n̂ of the object holder
in camera coordinates from averaged shading information of each
light, as Figure 3(b) shows. We then rely on photometric stereo to
measure surface normals of a flat diffuse white surface placed on the
holder stage. In the last step, we convert the camera coordinates to
object stage coordinates with respect to an orthogonal vector frame
with the same z-axis component of n̂. We transform the initial view
vector ô in the camera coordinates to the actual view vector o in
the object holder coordinates by applying a rotation transformation
on the vector frame. This completes our system calibration [see
Figure 3(c) for light calibration results].

Registration During acquisition of the HDR images, any slight
vibration may cause problems during registration, despite the pneu-
matic vibration isolation system. In particular, we found a long-
term registration problem of up to 15 pixels (roughly 10µm). Since
we capture specular highlights from various angles, most image
registration algorithms would fail searching correspondences. To
overcome this, we capture images with all the lights on at regu-
lar intervals, and use them for searching correspondences for rigid
body registration.

4 Microscale Normals and SVBRDFs

Our system explores the co-design of novel hardware configura-
tions and algorithmic solutions, to overcome some of the intrin-
sic tradeoffs of combining a light dome approach with microscopic
imaging conditions. We show here how to factorize normals and
SVBRDF from our captured data. Note that we use point-wise illu-
mination only to capture reflectance, while we use both SH lighting
and point-wise illumination to capture the surface normals. Please
refer to the supplemental material for complete implementation de-
tails of all the contents in this section.



4.1 Microscale Normals

We first need to estimate per-pixel surface normals. As shown in
Figure 4, many specular highlights on the outer layer can be seen
at our capture resolution. Therefore common photometric stereo
(PS) approaches that estimate shape-from-shading are inappropri-
ate, since they would require separating the diffuse and specular
information at microscale resolution. Ma et al. [2007] apply PS
with polarization; however, this is impractical in our case, given our
hardware configuration including densely packed LED lights in our
small dome. Johnson et al. [2011] also apply PS using a flexible sil-
ver layer, although their goal is to capture geometry only, since the
coated layer removes reflectance information. Recently, Nam and
Kim [2014] introduced a hyperspectral photometric stereo method
that effectively removes interreflection while estimating normals
from diffuse reflection.

We therefore choose a shape-from-specular (SfS) approach [Chen
et al. 2006; Tunwattanapong et al. 2013], given the large number
of light sources in our dome. First, the initial surface normal at
each pixel is computed from measurements under SH illumination
(level 3) [see Figure 7(c) for an example]. This allows us to ob-
tain normal cues from first-bounce specular reflections on the outer
layer. However, our light dome design includes a hole of 20 degrees
around the zenith axis to allow for imaging; this means that our
setup misses discrete SH illumination patterns in that area, and as a
consequence the corresponding obtained values tend to be clamped.
To solve this, we first interpolate mirror-like reflection vectors illu-
minated by point lights circling the edge of the area where infor-
mation is missing, and then update the clamped values and outlier
artifacts with interpolated normals from the SfS method.

4.2 Microscale SVBRDFs

We now describe our algorithm for reconstructing SVBRDFs from
the initially estimated normals and the captured radiance. Each
BRDF is represented as a diffuse term and a specular term with
a non-parametric, tabulated 1D normal distribution function [Tor-
rance and Sparrow 1967]. We then factorize reflectance into basis
BRDFs and corresponding blending coefficients, via alternating op-
timization.

Given our fixed-view configuration, we estimate spatially-varying
BRDFs that share basis reflectance functions. We adapt a non-
parametric factorization approach [Lawrence et al. 2006; Alldrin
et al. 2008] and represent reflectance as a linear combination of
shared basis BRDFs and corresponding weighting coefficients. By
assuming that surface normals include enough angle variation, we
can overcome the lack of light sources near the zenith axis and ob-
tain enough mirror-angle observations. To take into account ran-
dom irregularities in specular reflection at the microscopic resolu-
tion, we choose a non-parametric NDF [Ren et al. 2011], instead
of relying on existing analytic functions such as Beckmann [Cook
and Torrance 1982] or GGX [Walter et al. 2007], commonly used
for object and mesoscale BRDF models.

4.2.1 Reflectance Model

The reflected radiance L at each point x along the view direction o
under one directional light from i can be obtained as

L(x,o) = R(x,o, i)(n · i)L(x, i), (1)

where n is the normal at x (our normal map has µm resolution). We
can express the reflectance term R to the diffuse and the specular
terms, where the basis of our specular term is originated from the

Torrance-Sparrow model [1967] as follows:

R(x,o, i) = 1
π
ρd(x) + ρs(x)D(x,h)G(n,o,i)F (x,h,i)

4(n·o)(n·i) , (2)

where ρd and ρs are diffuse and specular albedos at microfacet
scale, h = (o + i)/|o + i| is the half angle, D is the NDF term
for specularity, G is the geometric term, and F is the Fresnel term.

NDF Our NDF is represented as a non-parametric tabulated func-
tion of 90 coefficients. We factorize the specular lobe as a single
non-parametric NDF D, with the monotonicity constraint only, fol-
lowing Ren et al. [2011]. We found that this simple approach works
well with our captured data.

Shadowing/Masking We formulate the shadowing/masking ef-
fects on both the light and view directions, following Ashikhmin’s
formulation [2000]. Since this formulation relates the shadow-
ing/masking G and the distribution D functions, we apply an al-
ternating optimization for the factorization of both terms, after we
obtain the initial G based on V-grooves [Cook and Torrance 1982].

Fresnel To determine the Fresnel term, we require prior knowl-
edge about the material properties, such as whether it is dielectric or
metallic. Many recent works set the F (0) term manually [Holroyd
et al. 2008; Aittala et al. 2013; Ngan et al. 2005]. Given our form-
factor constraints in our lighting dome, we do not capture grazing
angles in general. Thus, to reduce complexity during the optimiza-
tion, we simplify F (x,h, i) to a constant color vector F per BRDF
basis. In our formulation, the specular coefficient is a monochro-
matic scalar, and only the Fresnel term accounts for color.

4.2.2 Alternating Optimization

We initially estimate surface normals as described above, and opti-
mize the basis BRDFs and its coefficients iteratively. Through 10-
fold cross validation, we then repeat the optimization iteration until
the test RMSE error starts to increase, following machine learning
convention. The number of iterations varies depending on samples
from one to three (usually two are sufficient). Instead of follow-
ing Lawrence’s non-parametric factorization of shading [2006], we
combine an alternative photometric algorithm [Alldrin et al. 2008]
with a non-parametric and isotropic NDF [Ren et al. 2011]. This
configuration helps reduce overfitting in estimating both reflectance
and normals in our experiments. We use a commercial sparse con-
vex quadratic programming solver (e04nkc) [NAG 2015]. In ad-
dition, linear constraints are set to impose non-negativity on basis
BRDFs, and the monotonicity of the distribution D. We found that
no additional regularization terms for smoothness are required.

5 Evaluation and Results

5.1 System Evaluation

Radiometric Characterization We characterize the spectral
power distribution of our white LEDs, shown in Figure 5(a). Since
we use multiple LEDs, their intensity and color may vary slightly;
we also build a light intensity profile for each LED by measur-
ing the reflected light from a Spectralon tile for each light, tak-
ing into account the cosine law for each light direction. We then
map device-dependent HDR RGB values of the trichromatic cam-
era to device-independent values in the standardized linear sRGB
color space, using an HDR color characterization method [Kim and
Kautz 2008]. Figure 5(b) compares the colors captured by our mi-
croscopic imager with reference colors measured by a spectrora-
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Figure 5: (a) Spectral power distribution of the LED lights, mea-
sured by a spectroradiometer. (b) & (c) Results of HDR color
characterization. (b) compares the color difference on 24 color
patches between our captured colors and reference measurements
from a spectroradiometer, in the CIE u′v′ chromaticity diagram.
(c) presents color differences of the training and the test datasets in
CIE ∆E00, u′v′ chromaticity. and the CIE XYZ color space (Y is
normalized to 100).
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Figure 6: (a) Short-term repeatability of the LEDs. We illuminate
the measured surface 100 times in 300 seconds. The coefficient
of variance of the measured luminance is 0.73%. (b) Long-term
stability of the LEDs. The LED stays stable after approximately 30
minutes of warming up.

diometer (Jeti Specbos 12001) in the CIE u′v′ chromaticity dia-
gram. In addition, we measured 24 standard color patches from
the X-rite ColorChecker Passport to train the model, and tested it
with eight different test colors [Figure 5(c)].

LED Light Characterization We have evaluated short-/long-term
repeatability of the LED lights for validating stability. Figure 6(a)
shows short-term stability when illuminating a surface 100 times
in 300 seconds after 30 minutes of warming up. The coefficient
of variation (CV) of the measured luminance levels is 0.73%. Fig-
ure 6(b) shows long-term stability. After approximately 30 minutes
of warming up, luminance levels remain stable at 93% of the max-
imum luminance.

Stray Light Scattering Our dome structure is painted with black
diffuse color to minimize the effect of interreflections; however,
some scattering due to stray light is inevitable. To analyze its im-
pact, we measured the ratio of the total scattered energy in the
dome to the energy of one light, by capturing HDR images of our
test chrome ball lit from different angles. Figure 7(a) shows some
of these images, while Figure 7(b) shows the result. The amount
of stray light depends on the direction of the incident light: from
around 10 % when perpendicular, gradually decreasing to 2.7 % for
grazing angles. When we capture a light probe under a point light
source in an ordinary darkroom, the ratio ranges similarly from 9 to
5 %. The amount of stray light in our setup is therefore similar to
object-scale darkroom setups.

1Luminance accuracy: ±0.05 at 1000 cd/m2; xy chromaticity repeata-
bility: ±0.0005 [Morgenstern et al. 2004]
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Figure 7: (a) HDR captures of a chrome ball lit from varying zenith
angles. Note that the star-shaped spikes are typical diffraction ar-
tifacts produced by the aperture wings in the lens. (b) Measured
ratio between the direct and stray interreflection light for varying
latitudes. (c) An example of SH patterns (Y −3

3 of level 3) for cap-
turing microscale geometry.
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Figure 8: Point spread function with a 5:1 magnification ratio and
f /5.6. (a) Reference MTF target. (b) & (c) Captured slanted edge.
(d) & (e) Estimated edge and point spread functions for each color.

Diffraction Limit Given our large magnification ratio, Airy disks
due to diffraction will inevitably appear, whose size is wavelength-
dependent and inversely proportional to the numerical aperture size.
The diffraction limit of our system can be evaluated by the size of
these Airy disks as point spread functions (PSF). To measure it and
analyze its impact, we capture an etched slanted edge of a stan-
dard MTF target (ThorLabs R2L2S2P), shown in Figures 8(a) – (c),
from object scale to µm scale. Following Burns’s method [2000],
we obtain the first derivatives of the edge spread functions (ESF)
which lead to discrete PSFs for each channel; these are then fitted
to Gaussian functions [see Figures 8(d) and (e)], finally applying
non-blind deconvolution using the Richardson-Lucy method. Ta-
ble 1 shows the measured resolving powers (and the corresponding
DOFs) for each configuration we tested. The resolving power is
calculated according to the Sparrow limit [Minin and Minin 2016],
which is widely used for evaluating microscopic imaging perfor-
mance. We highlight the best configurations in green, which yield
an optical resolution of about 2 – 3µm. We found that the heights
of the micro-structure of the objects that we capture span approxi-
mately 50 – 100µm. We therefore choose the camera configuration
for each magnification ratio considering not only resolving limit,
but also depth of field. The diffraction limit of this configuration is
evaluated as PSFs in Figure 8.



f/2.8 f/4.0 f/5.6 f/8.0 
1x 6.71 6.32 7.49 9.56 
2x 4.65 4.72 4.58 7.06 
3x 2.56 2.97 3.68 5.20 
4x 2.82 3.05 3.45 4.79 
5x 1.98 2.60 3.10 4.27 

(a) Resolving limit (object-side) [µm] 
f/2.8 f/4.0 f/5.6 f/8.0 
396 560 792 1,120 
148 210 297 420 
88 124 176 249 
62 88 124 175 
48 67 95 134 

(b) Depth-of-field [µm] 

Table 1: Measured optical resolving limit (a) and corresponding
depth of field (b) for available lens configurations in our system.
The green cells indicate good configurations providing around 3µm
optical resolution, accounting for diffraction.
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Figure 9: We measured four standard surface roughness samples
(Flexbar, Model 16008), described in (a), and compare the normal
deviations measured by our system and a using a Nanofocus micro-
surface profiler as ground truth, achieving a very good correlation.

Normal Accuracy We employ a standard surface roughness tar-
get [Flexbar, Model No. 16008; see Figure 9(a) for data of the four
samples used]. We measured the four samples using our system and
a micro-surface profiler (Nanofocus µsurf) as ground truth. Since
the two systems work at different resolutions, direct comparison of
measured normals per pixel is impossible. Instead, we compare
measured surface roughness in terms of normal deviation, shown in
Figure 9(b). It can be seen how both sets of measurements show a
strong correlation (R2 = 0.9989).

Reflectance Accuracy We first evaluate the microscale re-
flectance accuracy of our measurements on eight different mate-
rials. We conducted leave-one-out cross validation (LOOCV) in-
stead, by randomly sampling 10 % of the 374 microscopic captures
(one for each light). Table 2 summarizes the resulting factorization
accuracy for our eight appearance datasets, measured as RMSE,
PSNR, and SSIM. From this, we can see how our approach yields
a very close reproduction of microscale appearance.

We qualitatively evaluate the accuracy of our system. We create
synthetic images as input, using a reference surface [sample #3 in
Figure 9(a), whose average height difference from the mean height
(Ra) is 0.8µm], and rendered with all 100 MERL BRDFs [Ma-
tusik et al. 2003]. From these rendered images, we apply our re-
construction algorithm, and compare the estimated reflectance with
the ground truth BRDFs. Figure 10 shows two examples of spec-
ular and diffuse BRDFs, steel (a) and green latex (b), where we
plot the reflection around the mirror reflection angle (135 degrees,
red line). Overall our measurements present good agreement with
the ground truth. Nevertheless, there are some noticeable differ-
ences between our estimated BRDFs and the ground truth, in par-
ticular near the mirror reflection in (a), and the near grazing angle
in (b). This is due to our sampling strategy around the mirror re-
flection, which is limited by the zenithal hole and the density of
our LEDs. Moreover, in our reconstruction algorithm we choose
a single non-parametric representation for NDFs, following Ren et
al. [2011]; while this allows us to factorize SVBRDFs and normals
simultaneously, this could limit the accuracy in estimating sharp

Samples Training set Test set 
RMSE PSNR SSIM RMSE PSNR SSIM 

Copper coin 1.4507 45.3860 0.9678 1.2557 45.0217 0.9742 
Dollar bill (Tr) 1.9863 49.0532 0.9928 1.9107 46.3339 0.9886 
Dollar bill (eagle) 0.3300 34.0659 0.7922 0.3244 34.3071 0.8047 
Halftone printout 0.3791 34.4255 0.8434 0.3659 34.1288 0.8405 
Leaf 0.2893 36.4879 0.8667 0.2940 36.3763 0.8653 
Blue notebook 1.1011 46.1157 0.9916 0.9386 44.8029 0.9893 
Leather 0.0231 42.2071 0.9660 0.0182 41.7205 0.9641 
Textile 1.3310 38.0945 0.9196 1.3730 36.8318 0.9051 

Table 2: Leave-one-out cross validation for accuracy test of our
reconstruction (RMSE/PSNR/SSIM), on eight different materials.
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Figure 10: We compare the measurements of our system with all
100 MERL BRDFs (green channel only), rendered over the stan-
dard surface sample [S3, shown in Figure 9(a)]. We show results for
steel (a) and green latex (b). Our measurements show good agree-
ment with the ground truth, with some noticeable errors around the
mirror reflection and near grazing angles (see text for details).

specular reflections. Recently, Bagher et al. [2016] presented an
effective non-parametric representation for homogeneous BRDFs,
using three individual tabulated factors for the specular term: the
NDF, the shadowing/masking, and the Fresnel term, respectively.
This could be a good alternative to improve performance.

5.2 Captured Results

We now show results for our eight datasets shown in Table 2.
The image acquisition process takes ∼9 hours for each dataset;
the decomposition process requires also ∼9 hours to converge
per iteration with an Intel i7 3770K processor and 32GB RAM.
Our non-parametric, data-driven rendering is implemented on the
LuxRender framework with a high-fidelity HDR color reproduction
method [Kim et al. 2009; Kim 2010]. Our supplemental material
includes animations, rendering novel views under dynamic lighting.

Microscale SVBRDFs and Geometry For our first example, we
captured a $20 dollar bill. Figure 1(b) shows our measured geom-
etry of a ∼1 mm2 area around the letter T in the bill, compared
to the state-of-the-art geometry capture of Johnson et al. [2011].
Our captured data is factorized to microscale normals, which are
converted to the geometric shape. This is done by solving an ob-
jective function that minimizes the difference between the partial
derivatives of the geometry and the captured normals [Basri et al.
2007]. Even though the bill itself is different from the one that
Johnson captured, we clearly see a very strong structural similarity
and level of detail. In addition to capturing microscale geometry at
state-of-the-art resolution, we can also capture microscale material



appearance simultaneously; Figure 1(c) shows a comparison with
a microscopic photograph of the same region. Note that Johnson’s
work cannot capture reflectance information.

Figure 11(a) shows a microscopic photograph of the eagle head in
the bill, next to our reconstruction and a normal map by factorizing
our data into four basis BRDFs and blending coefficients. Note how
we can clearly separate the striped pattern on the background into
the two ivory and yellowish lines, as well as the metallic flakes and
greenish pigments of the head. Note also how the metallic specular
function (material #4) shows a very sparse, sharp distribution.

Figure 11(b) shows a grayscale logo image, printed with a standard,
high-resolution CMYK laser printer. The microscale appearance of
a gray halftone printout is significantly different from object-scale
appearance. We show here a 460×460 µm2 area, photographed
and reconstructed with our approach. The microscopic photograph
clearly shows three different main pigments of cyan, magenta, yel-
low, as well as the white paper. Figure 12 shows the impact of
the number of basis BRDFs for this example; when the number of
basis BRDFs in our factorization matches the number of different
materials in the actual sample, the reconstruction converges.

Figure 11(c) shows an example of a red leaf with green dots. Our
reconstruction result is close to the microscopic photograph, while
our captured normals clearly reveal the microscale surface of the
leaf. Our SVBRDFs represent red, green and beige color compo-
nents of the leaf. Note that we chose a particularly thick leaf to
minimize the effects of surface scattering. Last, Figures 11(d) and
(e) show a notebook cover and a coin, respectively. From these
examples, we can see how our microscale reconstructions appear
virtually identical to the original surfaces. Moreover, as shown in
Figure 13, our data allow for novel rendered views under dynamic
lighting, which indicates that our factorization does not suffer from
overfitting (see video).

Comparison with Other Models We compare our results with
the recent capture method by Aittala et al. [2015] (Figure 14). In
particular, we capture and reconstruct a leather sample with Ait-
tala’s (a) and our method (b). Note that since Aittala’s method is
not designed for microscale capture, we apply it to object scale re-
flectance and normals for a fair comparison of scale. While their
method provides a much simpler acquisition setup using a mo-
bile device and yields plausible results at mesoscale, our proposed
method captures much finer geometric and reflectance detail, yield-
ing an accurate representation at microscale, shown in a comparison
of our normals with the geometric measurement using a Nanofocus
confocal 3D scanner. Both systems are therefore complementary, in
the sense that they tackle the acquisition problem at different scales.

Second, we compare our SVBRDF to the existing microfacet re-
flectance models of Cook-Torrance and Oren-Nayar, on our textile
dataset (Figure 15). Since these algorithms are originally designed
for BRDF only, we share our captured weight map and normals for
the side-by-side comparison. The parameters for each BRDF model
are fit to the measured appearance using Levenberg-Marquardt non-
linear optimization. Our method can capture better microscale ap-
pearance, with more details in the specular reflection.

5.3 Editing Microscale Materials

One additional advantage of our SVBRDF decomposition at such
small scale is that it enables novel appearance edits from real-
world data. Each captured microscale BRDF can be edited indepen-
dently, from which object scale appearance changes emerge. This
was shown in bi-scale material design for the case of synthesized
data [Wu et al. 2011], focusing on efficient rendering of the edited
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Figure 11: Results of our acquisition. For each material, we
present an object-scale photograph, a micro-scale photograph, our
reconstruction result, in addition to measured normals and decom-
posed basis SVBRDFs with corresponding weight maps for five
daily life objects. More datasets are also shown in Figures 1, 14,
and 15. Refer to the supplemental material for more results.
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Figure 13: Novel-view renderings under different view point and
lighting (refer to the video in the supplemental material).
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Figure 15: Comparison of our BRDF reconstruction method, and
other existing microfacet reflectance models.

objects. To illustrate this, we render object-scale appearance using
a simple tiling synthesis from the measured SVBRDF, and apply
supersampling to our synthesized weight maps and normal maps
at rendering time. Figure 16 shows results using two different ob-
jects. Apart from generating strikingly different color appearances,
we can also create an anisotropic appearance by altering our micro-
scopic normals.

6 Discussion

The are many exciting opportunities for future work. The micro-
scopic photographs of metallic surfaces reveal many irregular, com-
plex, and multi-colored patterns, in addition to diffraction. Such ir-
regular color patterns can be observed in Figures 17(a) and (b), and
are due to interference effects (according to the Huygens-Fresnel
principle). The physical computation of such interference patterns
is challenging in our setup; we therefore simplify this effect using a
Fresnel color constant in our reflectance model [Figures 17(c) and
(d)], which does not reproduce such subtle color changes. Highly
translucent materials are also challenging, as stated in the introduc-
tion and shown in Figures 17(e) through (h) for the case of artifi-
cial plastic fibers. Solving interreflection by applying hyperspectral
imaging [Nam and Kim 2014] remains as our future work.

In summary, we have presented a novel microscopic system to
simultaneously acquire microscale reflectance and normals, by
combining microscopic imaging with reflectometry. This is the
first time that this information is simultaneously captured at such
small scale. We have shown examples of reconstruction and edit-
ing on many different materials, as well as favorable compar-
isons with state-of-the-art acquisition techniques. Several other
potential applications can benefit from this work, such as data-
driven, bi-scale material editing for novel material fabrication,
digital forensics for detecting counterfeit notes or passports, etc.
To foster further research on appearance acquisition, reconstruc-
tion, and editing, we have made our captured datasets available at
http://vclab.kaist.ac.kr/siggraphasia2016p2/.
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