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1 Reconstructing Reflectance and Normals

We describe our algorithm for jointly reconstructing both non-
parametric SVBRDFs and normals, from our microscopic measure-
ments, based on the Torrance-Sparrow model [1967]. Since we ap-
ply the traditional two-level concept of object and microfacet geom-
etry to our microscopic measurements, we introduce a new layer of
random irregularities in specular reflection at submicron resolution.
We model this distribution as a non-parametric tabular function. Fi-
nally, we factorize the captured appearance into basis BRDFs and
blending coefficients, which allows for accurate reproduction and
editing of material appearance.

1.1 Reflectance Representation

We express the BRDF at each point x adapting the non-parametric
version of the Torrance-Sparrow model, since this model does not
depend on the particular distribution being used:

R(x,o, i) = 1
π
ρd(x) + ρs(x)D(x,h)G(n,o,i)F (x,h,i)

4(n·o)(n·i) , (1)

where ρd and ρs are diffuse and specular albedos at microfacet
scale, n is the normal at x (the normal map has µm resolution),
h = (o + i)/|o + i| is the half-angle vector. D is the facet distri-
bution term, G is the geometric term, and F is the Fresnel term, all
of which will be detailed later in this section.

Specular Irregularity Our NDF is represented as a non-
parametric tabulation function of 90 coefficients. We factorize the
specular lobe as a single non-parametric NDF D with the mono-
tonicity constraint only, following Ren et al. [2011]. The non-
parametric coefficients are found from approx. two million lighting
samples. These large number of lighting samples make our prob-
lem an overdetermined system, thus they are sufficient to determine
non-parametric coefficients even without smoothness constraints.
We found that smoothness constraints attenuate the specular high-
light in the lobe.

Traditional BRDF models formulate the microfacet distribution as
a parametric function [Cook and Torrance 1982; Ashikhmin et al.
2000]. However, the parametric function in that resolution is un-
known. Instead, we leverage the capabilities of our capture system
and follow a data-driven approach, formulating this unknown dis-
tribution D as a tabulated 1D array of 90 coefficients. Our distri-
bution satisfies D(x,h) > 0 and

∫
Ω+

(h · n)D(x,h)dwh = 1,
where Ω+ = Ω+(n) = {h|h · n > 0}. We then extend this 1D
array to non-parametric bases of spatially-varying BRDF through
linearly constrained factorization [Lawrence et al. 2006].

Nanofacet Shadowing/Masking We formulate the shadow-
ing/masking effects on both the light and view directions as
G(n,o, i) = g(n,o)g(n, i). To account for the distribution in ge-
ometrical shadowing, we rely on Ashikhmin’s formulation [2000]
to our measured resolution:

g(n,k) =
(n · k)∫

Ω′
+

(h · k)D(h)dωh
, (2)

where k is either o or i. Note that g includes the integral of the
nanofacet distribution D over the hemisphere Ω′+ = {Ω+(k) ∩
Ω+(n)}. Since this formulation relates the shadowing/masking
G and the distribution D functions, we apply an alternating opti-
mization approach for the factorization of both terms. Instead of
merely initiating G with a constant [Ngan et al. 2005], we first cal-
culate the initial G based on V-grooves [Cook and Torrance 1982]:
G(n,o, i) = min

{
1, 2(n·h)(n·o)

(o·h)
, 2(n·h)(n·i)

(i·h)

}
, and then factorize

the basis BRDFs; this results in the initial D. In the following it-
erations, we update G by using Equation (2) and the estimated D.
We found that this approach improves the convergence speed sig-
nificantly (see Subsection 1.3 for optimization details).

Fresnel To determine the Fresnel term, we require a prior knowl-
edge about the material properties, such as the refractive index or
F (0). Many recent works set the F (0) term manually [Holroyd
et al. 2008; Aittala et al. 2013; Ngan et al. 2005]. Given our
form-factor constraints, we do not in general capture grazing angles
beyond 45 degrees, where F (0) remains virtually constant [Wang
et al. 2011]. To reduce complexity during the optimization, we sim-
plify F (x,h, i) as a constant color vector F per BRDF basis.

1.2 Light Transport Formulation

We now describe how to relate the unknown microscale SVBRDF
to our captured HDR images. The reflected radiance L at a point x
along the view direction o under one directional light from i can be
computed as

L(x,o) = R(x,o, i)(n · i)L(x, i). (3)

Let l ∈ RJ be a vector representing the captured per-pixel radiance
under J different light sources, and r ∈ RJ be a vector of the
corresponding per-pixel reflectances. From Equation (3), we have

l = φ� r, (4)

where φ ∈ RJ is the incident light times the cosine term (n · i),
and � is the Hadamard product operator.

Observe that in Equation (1), R can be uniquely determined once
ρd and the product ρsFD are known, since none of the other terms
depend on the material properties. To represent R, we can then use
a reflectance coefficient vector γ = [ρd, ρsFD]ᵀ ∈ RM (where the
length of ρsFD isM −1). Now computingR essentially becomes
solving for γ.

Once we obtain γ, we can factorize ρsFD into the normalized dis-
tribution function D and the specular albedo times the Fresnel con-
stants ρsF , by normalizing ρsFD with kD =

∫
Ω
ρsFD(h)(h ·

n)dωh [Ashikhmin et al. 2000]. This normalized distribution D
will be used for rendering later.

From Equation (1), defining a matrix Ψ = [ψ1, · · · ,ψJ ]ᵀ ∈
RJ×M to denote the diffuse shading and the shadowing/masking
terms under our J light sources yields

r = Ψγ. (5)



Assuming that the nanofacet distribution is isotropic, each el-
ement ψ is a 1D tabulated geometric attenuation factor ψ =[

1
π
, 0, · · · , G(n,o,i)

4(n·o)(n·i) , · · · , 0
]ᵀ
∈ RM . The first element in ψ is

set to 1
π

, and the specular geometric factor G(n,o,i)
4(n·o)(n·i) for the spec-

ular lobe is set to a position depending on the angle θh between n
and h; the rest of elements is set to zero.

Furthermore, we factorize our reflectance into a linear combination
of non-parametric basis BRDFs [Lawrence et al. 2006; Alldrin et al.
2008]. In particular, the reflectance coefficient vector γ can be rep-
resented as a linear combination of a number K of basis materials.
We can rewrite γ as the product of the non-parametric basis BRDFs
β ∈ RM×K and their coefficients w ∈ RK .

γ = βw. (6)

Substituting Equations (5) and (6) back to Equation (4), we have

l = φ� (Ψβw), (7)

which relates our unknown SVBRDF representation (β and w) to
the captured HDR images l.

1.3 Microscale Reflectance and Normal Estimation

Alternating Solver We estimate microscale appearance from mi-
croscopic measurements in two steps. First, we initialize per-pixel
normals. Then, we alternate the optimization of basis BRDFs β,
blending coefficients w, and normals n, based on the rendering
equation for photometric consistency, minimizing the Euclidean er-
ror over the number of pixels N until convergence is reached:

minimize
β,{wi},{ni}

N∑
i=1

||li − φi � (Ψiβwi)||2. (8)

Initializing Normals The initial values of the normals are com-
puted following the method of Tunwattanapong et al. [2013], ex-
ploiting the large number of point light sources in our setup. Specif-
ically, the initial surface normal n at pixel x is computed from mea-
surements under SH illumination (L3). The SH-based method al-
lows us to measure the first-surface specular reflection that the mi-
crofacet theory stands on. However, since our lighting setup misses
discrete SH illumination patterns around the zenith axis in about
20 degrees, the values nθ obtained in that area tend to be clamped
in the SH-based approach. We thus take an algorithmic approach
and employ shape-from-specularity (SfS) [Chen et al. 2006], inter-
polating mirror-like reflection vectors illuminated by point lights
circling the edge of the area where information is missing. We then
update the clamped zenith angles nθ and outlier artifacts estimated
with interpolated normals from the SfS method.

Initializing w To initialize the spatial blending weight matrix w,
we cluster all pixels into K groups using the geometric mean of
observations under varying light directions.

Updating β In order to solve the optimization problem of non-
parametric bases β, we pack measurements of Ψ, l and Φ for each
pixel i in a form of Hf = g. Please see Figure 1 for a graphical
illustration. g ∈ RJN is a column vector, whose elements rep-
resent radiance li under J lights for each pixel, and f ∈ RMK

is another column vector obtained from vectorizing β. We de-
fine H ∈ RJN×MK as a matrix whose element Hi ∈ RJ×MK

is a matrix of wi
ᵀ ⊗ (Φi �Ψi) for N number of pixels, where

Φi = [φi, · · · ,φi] ∈ RJ×M is the irradiance matrix that dupli-
cates the elements φi times the resolution M of the BRDFs, and

⊗ is the Kronecker product operator. The packing of H is in-
spired by a recent factorization method for non-parametric basis
BRDFs [Alldrin et al. 2008]. Different from that work, we for-
mulate H to factorize the nanofacet distribution function based on
the Torrance-Sparrow model, rather than the entire basis BRDFs, in
order to avoid overfitting in β. We then formulate an objective func-
tionO(f) that minimizes the squared difference between Hf and g
solving O using quadratic programming. We use a sparse convex
quadratic programming solver (e04nkc) provided by the Numerical
Algorithms Group [NAG 2015]. In addition, linear constraints are
set to impose non-negativity on β, and the monotonicity of the dis-
tribution D. Note that we employ the monotonicity constraint only
in the NDF optimization to preserve the pointy specular reflection
phenomenon at the microscale following Ren et al. [2011]. We do
not use a smoothness constraint, common in general optimization
frameworks.

Updating w We can update wi for each pixel i independently.
The objective function is defined as

O(w) = ‖l− {φ� (Ψβw)}‖2 . (9)

In order to avoid overfitting w in our factorization, we consider a
linear and a sparsity constraint: (a) the sum of non-negative blend-
ing weights w is forced to be equal or close to unity (

∑
w 6 1),

thus conserving energy; and (b) the weights w are forced to be a lin-
ear combination of relatively few basis BRDFs at each surface lo-
cation. We solve the optimization by quadratic programming [NAG
2015].

Updating Normals For each pixel i, we compute a surface nor-
mal ni that minimizes the l2 norm of the difference between l and
ψγ: ‖l−ψγ‖. In practice, we iteratively refine the interpolated
normals using a multi-level grid approach [Chen et al. 2014]. At
each iteration, we sample 3×3 normal candidates around the es-
timated normal, with one- or two-degree intervals over the hemi-
sphere via concentric mapping. We then exhaustively search for an
optimal normal that minimizes the error in Equation (8). Differ-
ent from Chen et al. [2014], we reduce the angular search range by
half at each stage, while preserving the same resolution of the grid.
This multi-level grid approach allows us to find normals with a high
angular resolution while searching the neighboring region within a
certain boundary.

Termination Criteria Since we begin with a large amount of nor-
mal observations n, we can safely assume that our initial normals
are more accurate than the basis BRDFs β and coefficients w. We
first repeat our alternating optimization of β and w until they con-
verge, then update n consequently and repeat the process. These
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Figure 1: Closed form matrix factorization to update β



alternating optimizations are conducted until the overall radiance
error converges in Equation (8).

Color in SVBRDF According to the microfacet theory, the specu-
lar distribution is determined by the first-surface roughness, which
is monochromatic. Only Fresnel effects in the specular reflection
influence color in case of metallic surfaces. Accordingly, our for-
mulation the distribution of nanofacetsD and specular scaling coef-
ficient ρs are monochromatic in Equation (1), while diffuse albedo
ρd and Fresnel F are chromatic. Our non-parametric basis β in-
cludes the mixture of monochromatic and chromatic properties. To
represent color, we first factorize three color channels individually
to obtain red, green and blue β [Lawrence et al. 2006; Weistroffer
et al. 2007; Alldrin et al. 2008]. Different from previous works, we
then extract monochromatic D and ρs from each β via D normal-
ization to utilize them for rendering (see Section 1.2). Most mate-
rials present common D and ρs across color channels. In practice,
we found that estimates using the green channel are more reliable
than others. Once each estimation of D and ρs is done, we share
the green channel’s estimate as representative, while we preserve
the original colorimetric properties ρd and F from each channel’s
basis BRDF β to present color appearance.
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