

High-Quality Hyperspectral Reconstruction Using a Spectral Prior

Inchang Choi[†] Daniel S. Jeon[†] Giljoo Nam[†] Diego Gutierrez^{*} Min H. Kim[†]

* Universidad de Zaragoza, I3A

Universidad Zaragoza **Graphics** and Imaging Lab

Light and Color Imaging

Continuous spectra of light

Bayer pattern

RGB imaging

Hyperspectral Imaging (HSI)

Hyperspectral imaging

Compressive hyperspectral imaging

Compressive Hyperspectral Imaging

Reconstruction is an inverse problem of optical imaging

Straightforward Approach

• Learning a regression function using a CNN

The Regression Network Fails

ground truth regression

Related Work

- Hyperspectral Imaging
- Compressive Hyperspectral Reconstruction

HSI without Reconstruction

LCTF (liquid crystal tunable filter) [Attas et al. 2003] Pushbroom [Brusco et al. 2006]

HSI with Reconstruction

[Jeon et al. 2016]

Image Formation

Hyperspectral Reconstruction

"Find a hyperspectral image \mathbf{h} that satisfies the image formation"

underdetermined system

Reconstruction using TV-L1 Prior

- TV-L1 is very common in computational photography

TwIST [Bioucas-Dias and Figueiredo 2007]

SpaRSA

[Wright et al. 2009]

Reconstruction using Sparse Coding

- Use an overcomplete dictionary and a sparse code to represent a data

Autoencoder

- For Our Deep Spectral Prior

Autoencoder

[Hinton and Salakhutdinov 2006]

Autoencoder: Encoder and Decoder

Nonlinear representation

Encoder

Decoder

: generate nonlinear representations

Hyperspectral Reconstruction

- Learning a Spectral Prior
- Reconstruction with Alpha-fidelity

Overview of Our Reconstruction

Autoencoder of Hyperspectral Images

- 3 x 3 convolution without pooling
- ReLU activation function
- 64 feature maps

Columbia dataset [Yasuma et al. 2006]

Harvard dataset [Chakrabarti and Zickler 2011]

Validating Autoencoder

Our Reconstruction - Data Term

Our Reconstruction - Data Term

Our Reconstruction

$\min_{\alpha} \mathbf{i} - \mathbf{\Phi} \mathbf{D}(\alpha)^{2} \mathbf{h} = \mathbf{D}(\alpha)^{2}$ $D(\alpha)$

How can we utilize the encoder?

Decoder $D(\alpha)$

- produce **h** (hyperspectral images)

from (nonlinear representations)

- a prior on **h**
- know how **h** looks like

Encoder E (

- generat from **h**
- a prior on

- know how looks like

Impact of fidelity Prior

Yellow feather

Results

- Our Dataset
- Synthetic Results
- With a Real Compressive Imager

Our High-Quality Dataset

Download from http://vclab.kaist.ac.kr

Synthetic Result with Our High Quality Dataset

37

Synthetic Result with Columbia Dataset [Yasuma et al. 2010]

38

Synthetic Result with Our High Quality Dataset

Synthetic Result with Our High Quality Dataset

Our reconstruction

Our DD-CASSI Result [Gehm et al. 2007]

Our DD-CASSI Result

Applications

- Spectral Interpolation
- Hyperspectral Demosaicing

Changing Modulation Matrix

Our reconstruction: $\min_{\alpha} \left\| \mathbf{i} - \Phi \mathbf{D}(\alpha) \right\|_{2}^{2} + \tau_{1} \left\| \alpha - \mathbf{E}(\mathbf{D}(\alpha)) \right\|_{2}^{2} + \tau_{2} \left\| \nabla_{xy} \mathbf{D}(\alpha) \right\|_{1}^{2}$

 Φ for super-resolution: blurring + downsampling

Note: the observation *i* should be modified accordingly

Hyperspectral Demosaicing

Hyperspectral Demosaicing

Hyperspectral Demosaicing

Conclusion

53

- Learned a spectral prior using a convolutional autoencoder
- Proposed a novel hyperspectral reconstruction using the learned prior
- Demonstrated interesting applications
- Published a high quality hyperspectral dataset

Acknowledgments

• Seung-Hwan Back, Incheol Kim, Adrian Jarabo, and Paz Hernando

• Min H. Kim acknowledges

- Korea NRF grants (2016R1A2B2013031, 2013M3A6A6073718)
- Giga Korea Project (GK17P0200)
- MCST
- Samsung Electronics (SRFC-IT1402-02)
- ICT R&D program of MSIT/IITP of Korea (R7116-16-1035)

Diego Gutierrez acknowledges

- ERC under EU's Horizon 2020 research
- CHAMELEON project (682080)
- The Spanish Ministerio de Economia y Competitividad (TIN2016-78753-P)