

Practical SVBRDF Acquisition of 3D Objects with Unstructured Flash Photography

[†]Giljoo Nam [†]Joo Ho Lee [§]Diego Gutierrez [†]Min H. Kim [†]KAIST [§]Universidad de Zaragoza, I3A

Input & Output

Unstructured flash photographs

3D geometry

Input & Output

Unstructured flash photographs

Spatially-varying BRDF

Input & Output

Unstructured flash photographs

Reproduction in a virtual environment

Previous Work

[Lensch et al., 2003]

[Holroyd et al., 2010]

[Tunwattanapong et al., 2013]

[Schwartz et al., 2013]

Previous Work

[Aittala et al., 2015]

[Hui et al., 2017]

Challenges

• Limited sampling angles for BRDF acquisition

How can we reconstruct a full BRDF from retro-reflected observations?

Challenges

• Simultaneous acquisition of SVBRDF and 3D geometry

BRDF Acquisition from Flash Photography

• Parameter space for isotropic BRDFs

BRDF Acquisition from Flash Photography

• Limited BRDF sampling angle in flash photography

BRDF Model Validation

Cook-Torrance BRDF with 1D data-driven NDF

$$f(\mathbf{i},\mathbf{o}) = \frac{\rho_d}{\pi} + \rho_s \frac{D(\mathbf{h})G(\mathbf{n},\mathbf{i},\mathbf{o})F(\mathbf{h},\mathbf{i})}{4(\mathbf{n}\cdot\mathbf{i})(\mathbf{n}\cdot\mathbf{o})}$$

BRDF Model Validation

Cook-Torrance BRDF with 1D data-driven NDF

$$f(\mathbf{i},\mathbf{o}) = \frac{\rho_d}{\pi} + \rho_s \frac{D(\mathbf{h})G(\mathbf{n},\mathbf{i},\mathbf{o})F(\mathbf{h},\mathbf{i})}{4(\mathbf{n}\cdot\mathbf{i})(\mathbf{n}\cdot\mathbf{o})}$$

SVBRDF Representation

Ο

• Basis BRDFs and spatial blending weights

$$f(\mathbf{i}, \mathbf{o}; \mathbf{x}_{3})$$

$$f(\mathbf{i}, \mathbf{o}; \mathbf{x}_{3}) = \sum_{b=1}^{B} \omega_{b} f_{b}(\mathbf{i}, \mathbf{o})$$

$$f(\mathbf{i}, \mathbf{o}; \mathbf{x}_{2})$$

$$f(\mathbf{i}, \mathbf{o}; \mathbf{x}_{2})$$

$$f(\mathbf{i}, \mathbf{o}; \mathbf{x}_{1})$$

$$f(\mathbf{i}, \mathbf{o}; \mathbf{x}_{1})$$

$$f(\mathbf{i}, \mathbf{o}; \mathbf{x}_{2}) = \int_{b=1}^{B} \omega_{b} f_{b}(\mathbf{i}, \mathbf{o})$$

Problem Definition

Objective function using photometric consistency

X: 3D vertices N: surface normals

Problem Definition

Objective function using photometric consistency

X: 3D vertices N: surface normals

Overview

• Iterative & alternating optimization of $\{X, N, W, F_b\}$

X: 3D vertices N: surface normals

Data Capture

- Any camera with a flash will work
- We test two types of cameras
 - Mobile phone with built-in LED
 - DSLR with built-in flash
- 100 200 images (still/video)

Overview

• Iterative & alternating optimization of $\{X, N, W, F_b\}$

X: 3D vertices N: surface normals

Update SVBRDF

• Re-formulate the equation w.r.t. the reflectance

Update SVBRDF: Blending Weights

Per-vertex optimization

update W

update F.

update SVBRDF

update N 🕁 update X

Update SVBRDF: Basis BRDFs

- Optimize for all observations (NOT per-vertex)
- Hold W fixed and solve for ${\bf F}_{\rm b}$
- Sparse quadratic programming

Update Normals

Per-vertex optimization

$$\underset{\mathbf{n}}{\operatorname{minimize}} \sum_{k=1}^{K} \left(L(\mathbf{o}; \mathbf{x}) - f(\mathbf{i}, \mathbf{o}; \mathbf{x}, \mathbf{n}) L(-\mathbf{i}; \mathbf{x})(\mathbf{n} \cdot \mathbf{i}) \right)^{2}$$

$$(\mathbf{x} \neq \text{of images})$$
 normal for BRDF normal for irradiance

Non-linear optimization → hard to solve!

Update Normals

Per-vertex optimization

Linear regression → easy to solve!

Update Geometry

3D

Sľ

 \sim

• Screened Poisson surface reconstruction [Kazhdan 2015]

 χ : new geometry (unknown)

update X

update W -> update F_h -> update N ->

update SVBRDF

Update Geometry

- update $W \rightarrow$ update $F_b \rightarrow$ update $N \rightarrow$ update Xupdate SVBRDF
- Screened Poisson surface reconstruction [Kazhdan 2015]

Iterative Optimization

• Iterate the whole process until RMSE of the test set starts to increase

Results

point-light rendering

Results

point-light rendering

geometry

Results

point-light rendering

geometry

Comparison with Previous Work

(NextEngine)

Xia SIGA'16 Ours (passive env. lighting) (active flashlight)

Evaluation: Geometry Refinement

avg. geo. diff. [mm]

Evaluation: Geometry Refinement

Discussion: DLSR vs. Mobile Phone

- DLSRs
 - Higher sensor signal-to-noise ratio
 - Brighter flashlight intensity
 - Does not need a darkroom

experiment setup flash in a darkroom flash + indoor light

Discussion: DLSR vs. Mobile Phone

- Mobile phones
 - Better portability
 - Record a video with the LED light on

Limitation

Geometry

 Complex geometries cannot be reconstructed accurately from image-based 3D modeling.

• Pinecones, hair strands, etc.

- Material Appearance
 - Inter-reflections
 - Subsurface scattering
 - Transparency

Conclusion

- Capture images using commercial cameras with flash lights
- You will get high-quality 3D geometry & SVBRDF!

point-light rendering

geometry