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Reconstructing Interlaced High-Dynamic-Range
Video Using Joint Learning
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Abstract— For extending the dynamic range of video, it is a
common practice to capture multiple frames sequentially with
different exposures and combine them to extend the dynamic
range of each video frame. However, this approach results in
typical ghosting artifacts due to fast and complex motion in
nature. As an alternative, video imaging with interlaced exposures
has been introduced to extend the dynamic range. However,
the interlaced approach has been hindered by jaggy artifacts
and sensor noise, leading to concerns over image quality. In this
paper, we propose a data-driven approach for jointly solving
two specific problems of deinterlacing and denoising that arise in
interlaced video imaging with different exposures. First, we solve
the deinterlacing problem using joint dictionary learning via
sparse coding. Since partial information of detail in differently
exposed rows is often available via interlacing, we make use of
the information to reconstruct details of the extended dynamic
range from the interlaced video input. Second, we jointly solve
the denoising problem by tailoring sparse coding to better
handle additive noise in low-/high-exposure rows, and also adopt
multiscale homography flow to temporal sequences for denoising.
We anticipate that the proposed method will allow for concurrent
capture of higher dynamic range video frames without suffering
from ghosting artifacts. We demonstrate the advantages of our
interlaced video imaging compared with the state-of-the-art
high-dynamic-range video methods.

Index Terms— Image reconstruction, deinterlacing, denoising,
high-dynamic-range video.

I. INTRODUCTION

H IGH-DYNAMIC-RANGE (HDR) imaging [1] has
been broadly used in many state-of-the-art imaging

applications [2], [3] to overcome the low-dynamic-
range (LDR) limit of image sensors. The fundamental
workflow of HDR imaging entails capturing different
exposures of a scene and combining them into an HDR
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radiance map [4], where a pixel value represents an estimate of
scene radiance. A camera response function must be calibrated
for conventional cameras unless a raw sensor readout is
used [5]. Since HDR imaging requires multiple inputs with
different exposures, various imaging hardware designs have
been proposed for concurrent capture [6], [7]. These custom-
built HDR imaging systems, such as Spheron VR and Arri
Alexa, are still expensive for ordinary users. Many alternative
algorithmic solutions for HDR imaging have been proposed to
reduce temporal-mismatch artifacts, such as ghosting [8]–[12].
As addressed by Srikantha and Sidibe [13] and
Tursun et al. [14], there is no universal HDR reconstruction
algorithm that can remove ghosting artifacts or motion blur
effectively enough for general dynamic scenes. Owing to
ghosting artifacts, HDR video has received even less attention,
aside from a few studies [15]–[17].

We propose a data-driven interlaced video reconstruction
method for extending the dynamic range (DR) of video imag-
ing, by taking advantage of the parallel imaging architecture
in conventional cameras., Despite the advantages of capturing
multiple exposures concurrently, interlace-based approaches
suffer from severe interlace artifacts and noise, creating chal-
lenges in reconstructing high-quality video. Interlaced video
imaging has been preliminarily exploited in a few works;
however, few extensive investigations of the major problems
of deinterlacing and denoising in interlaced video have been
reported. Our method reconstructs an extended dynamic range
of video by solving the aforementioned two problems: inter-
laced artifacts and noise, using jointly learned dictionaries of
artifacts through a multiscale homography flow. We propose a
data-driven approach based on dictionary learning. We make
use of partially over/underexposed data to reconstruct details
using jointly learned dictionaries. For denoising, it appears that
additive sensor noise is a major problem in exposure-interlaced
video. We tailor dictionary learning to better handle this type
of noise, in addition to adopting a multiscale homography
flow. Figure 1 provides examples of our joint deinterlacing
and denoising. Figure 2 outlines a stepwise workflow of our
interlaced video reconstruction strategy.

Our contributions are as follows:
• solving the deinterlacing problem via joint sparse coding

to make use of partially available data, and

• tailoring sparse representation to better handle additive
noise that arises in exposure-interlaced video.

II. BACKGROUND AND RELATED WORK

Extending the dynamic range of imaging, so-called HDR
imaging, has been researched extensively in recent decades.
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Fig. 1. An example of our extended dynamic range video reconstruction.
The left image pair compares the raw interlaced input and the result of our
jointly learned deinterlacing. The right image pair compares the noisy original
image and the result of our joint denoising.

Most previous works concentrate on reconstructing HDR still
images and tone-mapping. For brevity’s sake, we refer readers
to Reinhard et al. [18] for an overview of this subject. This
section reviews HDR imaging only for dynamic scenes and
HDR video.

A. HDR Imaging for Dynamic Scenes

1) Ghosting Artifacts: Since most HDR reconstruction
methods calculate a weighted average of unsaturated read-
outs of different exposures [1], ghosting is inevitable
in reconstructing HDR images of dynamic scenes. Many
deghosting methods have been studied by aligning input
images and reconstructing per-pixel radiance via motion
flow [10], [11], [15], [16]. The motion flow is calculated by
taking a per-pixel distance into account in an intensity mapping
function [9], or a noise distribution of colors in different
images [12]. Note that there is no universal HDR reconstruc-
tion method that can remove motion blur sufficiently well
for general applications in real-life conditions [12]–[14]. The
ideal solution for ghost-free HDR imaging of dynamic scenes
is to capture different exposures with a consistent shutter
time. To this end, gain-interlaced HDR imaging that captures
different exposures concurrently is ideal for capturing dynamic
scenes, as long as the two practical problems of interlace
artifacts and noise are solved. This paper introduces a data-
driven solution for these two problems, leading to ghost-free
HDR video.

2) Interlaced HDR: Complementary-metal-oxide semicon-
ductor (CMOS) image sensors are well known for par-
allelism of image signal processing features. They are
capable of recording multiple exposures by row-wise interlac-
ing. Gu et al. [19] introduced a method that removes a rolling
shutter effect using shutter time-interlaced modulation for
CMOS sensors. Heide et al. [20] developed a unified image-
signal processing framework that includes HDR imaging. They
proposed seminal time-interlaced HDR applications follow-
ing Cho et al. [21]. In addition to shutter-time interlacing,
Hajisharif et al. [22] proposed an application that records
gain-interlaced readout, so-called Dual ISO, using open-source
camera firmware, Magic Lantern [23] to reconstruct an HDR
image. Many works in HDR imaging [22], [24], [25] have
reported high gain amplification leading to severe additive

noise in the form of readout noise and analog-to-digital
converter (ADC) noise. Although these prior works proposed
interlaced HDR imaging, a few works have been devoted to
thoroughly investigating specific major problems of interlace
artifacts and noise that inevitably arise in interlaced HDR
imaging.

3) HDR Video: Kang et al. [15] proposed an HDR video
framework that acquires a time series of different exposures
and merges the scene radiance following the optical flow
to avoid ghosting artifacts. Based on this foundation, many
descendant approaches are differentiated by using different
methods of motion estimation. Mangiat and Gibson [26], [27]
introduced a block-based motion estimation technique rather
than a gradient-based optical flow. Kalantari et al. [17] pro-
posed a patch-based synthesis method to enhance robustness
in detecting motion flow. Recently, Gryaditskaya et al. [28]
perceptually evaluated the importance of motion and dynamic
range in a scene, and presented an HDR video algo-
rithm known as motion-aware exposure bracketing. However,
the optical flow calculation could fail when the scene includes
fast motion or non-rigidity in the homography. Addition-
ally, there is open-source firmware for Canon cameras [23]
that enables HDR video capture by alternating analog gain
frame-by-frame. However, an HDR reconstruction method is
required to combine multiple exposures via a motion flow
and removal of ghosting artifacts, leading to the risk of
ghosting due to the asynchronous capture of multi-exposures.
In addition to these software solutions, HDR video hardware
systems have been proposed by Nayar and Branzoi [29],
Tocci et al. [7], and Kronander et al. [30]. However, these
custom-built imaging systems are still expensive for ordinary
users. Alternatively, we utilize a concurrent capture setup
based on interlacing, and propose an interlaced video recon-
struction method that effectively removes interlace artifacts
and noise, yielding a ghost-free video using a conventional
camera.

4) Sparse Coding for Image Processing: An image signal
can be described as sparse linear combinations of an over-
complete dictionary that contains signal-atoms [31]. Many
image restoration and denoising algorithms have been intro-
duced in the last decade. These algorithms can be divided
into two categories: those employing separate training images
for learning the image prior and those using the corrupted
image itself to learn the posterior [32]. The former class
can be divided into parametric [33] and non-parametric
approaches [34]. Li et al. [35] proposed the use of a joint
sparse representation to estimate clean sound features from a
noisy feature vector of speech data captured inside a vehicle.
Yu et al. [36] also introduced a denoising approach that learns
a dictionary from multiple image copies rather than a single
image posterior. Recently, Serrano et al. [37] used sparse
coding to generate HDR images by decoding single coded
exposures. Yang et al. [38] proposed a super-resolution method
using a joint dictionary learned from a pair of low- and high-
resolution training datasets. We were inspired by this approach
based on joint sparse representation and adapted it in our
interlaced video imaging framework to enrich image quality
by minimizing interlace artifacts and shot noise.
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Fig. 2. Schematic diagram of our interlaced HDR video reconstruction strategy. (a) The input is interlaced readout for even and odd macro-rows. (b) It is
separated and demosaiced to color images, which suffer from interlace artifacts and additive noise (Section IV-A). (c) We first remove interlace artifacts using
a jointly-learned dictionary (Section IV-A). (d) We then remove additive sensor noise using another dictionary via multiscale homography flow (Section IV-B).
(e) and (f) Finally, we reconstruct HDR video frames and tone-map them (Section IV-D).

Fig. 3. Schematic diagram explains the theoretical derivation for our method
to extend the dynamic range of the camera using our deinterlacing and
denoising algorithm from interlaced readout. Adapted from Darmont [39].

III. EXTENDING THE DYNAMIC RANGE

The most common camera options for controlling expo-
sure are aperture size, shutter time, and gain amplitude.
Among them, the shutter time [19], [20] and the gain ampli-
tude [22], [24], [25] have been preferred for extending the
dynamic range for imaging. Recently, interlacing different
exposures has been proposed for taking advantage of the
CMOS architecture [19], [20]. Varying either the shutter
time or the gain factor is available for interlaced imaging. Even
though these approaches can be used to extend the dynamic
range, there are several drawbacks. Shutter-interlaced imaging
might cause motion blur of moving objects in long-exposure
rows and might introduce more noise in short-exposure rows.
Gain-interlaced imaging might cause severe readout noise in
high-gain rows. Inspired by a previous experimental analysis
on the impact of varying the gain and the shutter for HDR
imaging by Hasinoff et al. [24], we were motivated to choose
the gain factor for varying exposure with the objective of
avoiding motion blur and ADC noise while extending the
dynamic range; i.e., we use the same amount of photons for
each row when obtaining the exposure variations in interlaced
rows.

A. Analog Gain and Dynamic Range

In this work we use a gain-interlacing approach to extend
the dynamic range for video imaging. This section describes
our insight regarding how to extend the dynamic range in video
imaging through the analog gain control per row.

Figure 3 shows a schematic diagram that explains how to
extend the dynamic range using gain interlacing. It compares

the dynamic range differences with two different setups of
the low gain (the black line) and the high gain (the red
line). The sloped black line indicates the sensor output to
low-exposed illumination. The level of signal dependent noise
(e.g., photon shot noise) increases nonlinearly as illumination
increases, following the output signal. The gray curved line
indicates the level of noise. The ratio between the sensor
output and signal dependent noise determines the signal-to-
noise ratio (SNR). The intersection of signal independent
random noise (such as dark-current noise and readout noise)
and the sensor output determines the minimum level of the
sensible intensity value Imin. The maximum signal level before
saturation determines the maximum camera output Imax. From
given illumination, the signal range between Imin and Imax
determines the dynamic range of the camera.

When we control the gain amplitude ratio to make it higher,
the slope of the sensor output becomes faster, as shown by
the red line. The sensor output results in rapid saturation,
proportional to the gain amplitude. In addition, the random
noise level increases simultaneously when the gain amplitude
increases. Note that the dynamic range is extended toward the
lower level of illumination, as observed by Hasinoff et al. [24].
However, since the sensor signal is saturated quickly with a
high gain, the imaging setup with a high gain results in a
smaller dynamic range due to fast saturation.

B. Sensor Noise

The general HDR reconstruction process approximates
irradiance from a scene that falls on a sensor by scaling
up readouts along with noise. As addressed by Granados
et al. [25] and Hasinoff et al. [24], it is necessary to handle
the noise amplification issue for reconstructing high-dynamic-
range images. The pixel intensity is proportional to the radiant
power� of light energy that a sensor collects over an exposure
time of t seconds. A pixel value is also proportional to the
sensor’s analog gain factor g. The raw readout value I varies
between the minimum level of signals {� t g +nsg +nrg +na}
and its saturation level Imax, where ns is signal dependent
noise such as photon shot noise, nr is signal independent
random noise such as dark-current noise and readout noise,
and na is gain independent noise such as the ADC noise
and the additive noise of the amplifier itself [39]. Signal
dependent noise ns is dominant temporal noise and cannot
be reduced by amplifying the pixel output with analog gain.
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Therefore, we handle ns using our temporal denoising algo-
rithm (Section IV-C). We model signal dependent noise nr
as additive noise τ in Equation (6). We therefore alleviate the
signal dependent noise nr using jointly learned dictionaries,
which are trained from synthetic random noise (Section IV-B).
Note that the remaining term in the signal I , the gain inde-
pendent noise na, is negligible when high amplification is
configured so that the analog gain factor g takes a large value.

C. Our Approach

In this work, we attempt to take advantage of both the
low and high gain configurations by introducing a data-driven
algorithmic solution. For the low luminance level, we adopt a
extended dynamic range of the low luminance signals by using
the high gain as described above. For the high luminance level,
we utilize the original DR in the low gain. Our algorithmic
solution allows for selective reconstruction of valid signals
from gain-interlaced signal outputs, yielding the maximum
capacity of the analog circuit. Our algorithm achieves an
extended dynamic range in two folds. First, the signal sat-
uration problem in the interlaced higher exposure rows is
solved by our deinterlacing algorithm via sparse representation
(described in Section IV-A). Second, the increased level of
random noise is solved by applying our denoising algorithm
based on sparse coding (Section IV-B) and temporal denoising
(Section IV-C). Since our objective is to extend the dynamic
range of video imaging for capturing moving objects, we inter-
lace the analog gain amplitude, rather than the shutter time.
Therefore, the exposure time of every frame and every row is
identical to the given camera setup.

In summary, our joint learning-based strategy allows us to
maximize the capacity of the analog circuit by lowering the
smallest detectable input signal Imin, while maintaining the
details of the largest non-saturating signal Imax, which allows
for ghost-free video imaging with an extended dynamic range.

IV. RECONSTRUCTING INTERLACED HDR VIDEO

Taking gain-interlaced raw video readouts as input, our
video reconstruction method processes them in several steps,
as shown in Figure 2. First, we separate the gain-interlaced
raw readouts into two independent raw readouts by exposure.
We then perform demosaicing on the two pixel groups of
different gains to generate two color video frame groups of
different exposures. In order to alleviate interlacing artifacts
found in over-/under-exposed pixels, we apply local dein-
terlacing via sparse representation. Furthermore, we execute
global denoising that includes spatial denoising based on
sparse coding and temporal denoising based on multiscale
homography flow, in order to address different levels of noise
in each exposure induced by insufficient photons. Finally,
we reconstruct video frames with the extended dynamic range
using the deinterlaced and denoised video frames from the
previous step, and we perform HDR video tone-mapping to
generate a final output video in the sRGB color space. In the
following subsections, we provide an in-depth description of
each step of our interlaced video reconstruction method.

A. Deinterlacing via Sparse Representation

Since we use the same exposures in every two macro
rows (a macro row of a Bayer pattern includes two pixel
rows), interlaced HDR readouts capture images of the same
exposure in half resolution along the vertical axis. Inspired by
Yang et al. [40], we reconstruct two differently exposed images
in the full resolution from interlaced readouts using a jointly
learned dictionary. We train the joint dictionary from a pair
of interlaced and non-interlaced readouts by adopting a joint
dictionary learning technique. While Yang et al. focus on
increasing image resolution using a jointly learned dictionary,
we aim to interlace video frames of different exposures for
extending the dynamic range of imaging. Different from
the general super-resolution problem, partial information is
often available for the missing rows in interlaced HDR. Our
proposed method makes use of the partially over/underexposed
data to enhance the super-resolution results while learning
dictionaries.

1) Sparse Representation: A linear relationship between
corrupted and clean images can be learned using natural image
prior examples in a non-parametric manner. Let a column
vector x ∈ R

m be the signal that we want to decompose and
let D = [

d1, · · · ,dp
] ∈ R

m×p be a set of normalized basis
vectors, an overcomplete dictionary of p atoms (a small subset
of patches). We can represent x by adapting D using a column
vector α ∈ R

p , so-called sparse code, such that

x ∼= Dα. (1)

Extending this idea toward our reconstruction problem, we can
formulate a linear relationship L ∈ R

m×m from the clean
patch x to the corrupted patch y, using the sparse linear model:

y ∼= Lx = LDα. (2)

Assuming that α is sufficiently sparse and L is a linear
transformation, we can recover a clean image patch x with
respect to D from the corrupted patch y. Here, the corrupted
patch refers to a patch that has interlacing artifacts.

2) Joint Learning: The sparse optimization yields two
jointly-learned dictionaries D̂ for corrupted images and D for
clean ones that we use for removing the interlace artifacts and
denoising. If the interlace artifacts are linearly transformed into
a sufficiently small patch size, 6×6, we can jointly optimize
two different dictionaries of corrupted patches yi and clean
patches xi by sharing common sparse code (coefficients):

min
D̂,D,α

n∑

i=1

1

2

∥∥
∥yi − D̂αi

∥∥
∥

2

2
+ 1

2
‖xi − Dαi‖2

2 + λψ(αi ), (3)

where α ∈ R
p×n is the shared sparse code; D̂,D ∈ R

m×p

subject to ∀ j = 1, · · · , p,
∥
∥d j

∥
∥ ≤ 1 are the dictionar-

ies of 512 atoms for the corrupted and the clean patches,
respectively; the number of patches n is set to 100,000 from
natural image examples; λ is set to 0.15 for learning in our
experiments.

We used a super-resolution dataset for x provided by
Yang et al. [40], and created a corrupted image set y synthet-
ically, using L for training D̂ jointly. Note that choosing ψ()
is a selection problem that induces sparsity in α, traditionally
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Fig. 4. (a) shows a schematic diagram of the exposure separation, prior
to the joint-learning-based reconstructions that remove spatial artifacts. The
saturated pixels are first substituted by neighboring rows via a weighted sum
operator while unsaturated pixels with different exposures are scaled to match
the exposure levels of unsaturated pixels. (b) shows demosaiced interlaced
input, and (c) represents the final output of our reconstruction.

either the l0 pseudo-norm ‖α‖0 or the l1 norm ‖α‖1. We use
the l1 norm for training dictionaries and the l0 norm for
later reconstructing sparse coding using orthogonal match-
ing pursuit (OMP) [31] with consideration of computational
efficiency.

3) Sparse Reconstruction: For reconstructing a complete
image, we apply sparse representation exclusively within the
expanded boundary of the poorly exposed regions including
over-exposed and under-exposed pixels. The expanded bound-
ary is computed by dilating the poorly exposed regions with
a disk, of which the radius is twice that of the patch size.
We split the corrupted input image into overlapping patches.
For each patch ỹ we solve the following optimization problem
to obtain a sparse code α̃ using the jointly-learned corrupted
dictionary D̂ for a corrupted patch:

min
α̃

1

2

∥
∥
∥ỹ − D̂α̃

∥
∥
∥

2

2
+ λψ(α̃). (4)

Once we obtain the common sparse code α̃, we reconstruct the
clean patch x̃ with sharpened detail by multiplying the clean
joint dictionary D with the common sparse code:

x̃ = Dα̃. (5)

4) Learning With Partial Information: Different from the
general super-resolution problem, partial information from
differently exposed rows is often available for the missing
rows in interlaced HDR. In order to utilize partial information
in sparse representation, we first classify interlaced macro-
row signals into two groups, following Kang et al. [15],
who segmented each frame into the well-exposed and poorly-
exposed regions.

One group consists of well-exposed pixels, which we
can easily reconstruct with the corresponding gain factors
[see Figure 4(a)]; e.g., a frame of a high-gain factor
(25, ISO 3200) can be completed by copying and scaling the

pixel levels in the low-gain macro rows (20, ISO 100) with the
high-gain factor (25) and leaving the high-gain macro rows
unchanged. The low-gain exposure can be completed in the
opposite way.

The other group categorizes saturated pixels to be recovered
via our sparse coding framework. Whereas the general super-
resolution algorithms fill in missing information directly using
a dictionary, we fill in saturated rows first using neighboring
partial information by taking unsaturated pixel intensities
of the differently exposed rows [Figures 4(a)]. The partial
information is set up by copying the unsaturated pixels in
neighboring macro-rows to the saturated pixels. This operation
causes jaggy weaving artifacts, but we remove the artifact
using the joint dictionary that has been trained with images
corrupted by the same copying operation. The partial infor-
mation coupled with the joint corrupted-clean dictionary pair
has a significant impact on recovering original sharp edges
while reconstructing interlaced readouts. Note that this locally
applied operation makes it possible to save original details in
interlaced frames without saturation, while we apply denoising
globally across the entire image region.

B. Denoising via Sparse Representation
It appears that additive sensor noise is a major problem

that degrades image quality along with interlace artifacts in
interlaced HDR. As shown in the colorchecker in Figure 1,
severe noise and color artifacts caused by the additive noise
are unavoidable especially for the dark area in the scene.
We therefore tailor sparse representation to better handle
sensor noise for each frame. In addition to per-frame noise
reduction, we also apply a multiscale homography flow to
reduce temporal noise.

1) Dictionary for Noise: In most previous works, the dictio-
nary for denoising is learned as a posterior in the input image
itself such as K-SVD [31] and structural clustering such as
BM3D [41]. Yu et al. [36] introduced a denoising approach
that learns a dictionary from multiple image copies rather than
a single image posterior. Recently, Singh et al. [42] proposed
combining self patch-based denoising with super-resolution.
We were inspired to extend our joint representation idea to
denoising by modeling corrupted image patches y as the sum
of clean patches x and additive noise τ :

y ∼= x + τ. (6)

Note that this term τ is additive noise in linear sensor readout,
which is different from synthetic Gaussian noise commonly
used in testing denoising algorithms. Therefore, instead of
simply adding Gaussian noise, we generate gain-interlaced
noise by simulating the camera pipeline of our gain-interlacing
camera. Given images in a training set, we first transform
their colors to the linear sRGB space. The linear sRGB
training images are then subsampled to constitute Bayer-
patterned raw readouts. We then simulate Gaussian noise
independently in four Bayer patterns and two interlaced-gain
values. The standard deviations of these eight Gaussian noise
have been estimated from real interlaced raw readouts using
Liu et al. [43]. We multiplied the gain ratio to the standard
deviations of low gain values to simulate noise in resulting
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Fig. 5. Temporal denoising process using multiscale homography flow. We first build multiscale homography pyramids for consecutive frames by estimating
homography between adjacent gaussian pyramids (a). We then perform coarse-to-fine refinement to merge each multiscale homography pyramid into a cross-
scale homography flow map (b). The refinement is based on the accuracy of homography, computed by comparing the warped and the target frame. The
cross-scale homography enables to register multiple consecutive frames (c). We perform temporal denoising by selectively filtering the aligned frames (d).

HDR images. After adding noise, we perform a demosaicing
algorithm [44] to produce corrupted noisy RGB color images.

Using corrupted noisy and clean training images, we build
a jointly-learned dictionary by pairing corrupted noisy image
patches with clean patches of natural image examples. Note
that we use the noise image patches for yi in Equation (3) for
learning dictionaries. We have pre-trained two dictionaries for
a pair of ISO 100/3200 and a pair of ISO 100/6400. Once we
have determined the joint dictionary D̂ for noise, we obtain
sparse code α̃ from the new image using Equation (4). We then
use the sparse code α̃ to replace the joint dictionary D̂ with D
to reconstruct a noise-free frame x using Equation (1).

C. Temporal Denoising

Since we target video applications, we can further improve
our performance by applying temporal denoising. We were
motivated to make use of temporal sequences. This additional
step allows us to further reduce the noise level without
introducing ghosting artifacts that arise in HDR video. In many
HDR image and video algorithms, motion flow has been
used to combine multiple exposures of moving scenes in
various ways, e.g., detecting an optical flow [10], [15], com-
puting hierarchical homography [15], and estimating patch-
based motion flow [16], [17]. However, we found that these
approaches often failed in estimating the motion flow through
a hierarchical homography flow and optical flow [15], [45],
resulting in ghosting artifacts. See Figure 9 for examples.
We were therefore motivated to use the motion flow estimate
exclusively for denoising, rather than reconstructing HDR
video. We reconstruct each HDR video frame individually by
exploiting concurrent capture based on gain-interlacing.

1) Multiscale Homography Flow: We compute a multiscale
homography flow map per frame, following Liu et al. [45].
Motion flow calculation relies on detecting features that
imply motion. However, we found that many feature detection
algorithms fail with feature-less patches in a small sized
image. We choose a coarse-to-fine approach [46], [47] in
calculating the homography flow, different from the hierar-
chical approach [15], [45]. Figure 5 describes the workflow of
temporal denoising. Our motion calculation begins by building
a Gaussian pyramid of each frame, where the diameter of
the smallest level h is no less than 400 pixels. For a pair
of neighboring frames, we search for descriptors of feature
points in each level using a corner-detection algorithm [48]

and a descriptor extraction method [49]. We then compute
Hamming distances to match these descriptors and estimate
a homography transformation of each level of the frame pair
using RANSAC [50]. As our denoised image still contains
some noise, we begin by calculating each homography matrix
from the upper level of the coarsest input to the finest one in
the Gaussian image pyramid.

2) Coarse-to-Fine Refinement: Once the multiscale homo-
graphies are built, we exploit the accuracy of homographies
across scales using a coarse-to-fine approach to combine them
to a multiscale homography matrix for a transition between
frames. We translate the pixels at each level using the corre-
sponding homography and compare the pixel values between
the frames. If the similarity between registered pixels of the
previous and the next frames is below the threshold (0.1%
of the maximum pixel level) at the finest level, we select the
homography estimate at the next coarse level of the pyramid
and iterate testing the similarity of the next coarse level until
it reaches the threshold. We iterate this operation from the
finest to the coarsest level for all pixels with a group of
nine neighboring frames, including the next four frames, and
the current frame in the middle. This multiscale homography
flow calculation allows us to compute the motion flow more
robustly. Unlike hierarchical homography graphs [15], [45],
we chose a global multiscale homography in calculating the
motion flow as we observed that child homographies with few
features often fail due to lack of rigidity.

3) Temporal Denoising: The multiscale homography per
frame transition allows us to evaluate the pixel values along
the time line for denoising. We register all the pixels via the
motion flow using the homography and compare the signal
levels of each pixel. For each pixel in all frames, we first
compute the mean value of pixels lying along its motion
flow path. In this process, only those pixels with an intensity
difference to the target below a threshold value are counted.
The scene dependent threshold is empirically adjusted. The
threshold level is varied from 0.3 – 4.0% in our experiments.
The selective mean value is then assigned as the intensity
of the target pixel. This operation can be executed either
before or after HDR reconstruction.

D. HDR Reconstruction and Tone-Mapping

Once we deinterlace and denoise all frames of different
exposures, we combine all frames of different exposures into
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Fig. 6. A hardware system prototype with an SK-Hynix mobile image sensor.

an HDR video frame using a common HDR reconstruction
formula [1]:

Li j =
{

2∑

k=1

ω
(
Xi j k

)
Xi j k

/
gk

}/{
2∑

k=1

ω
(
Xi j k

)
}

,

where Li j is the HDR radiance pixel at pixel location (i, j);
Xi j k is the deinterlaced and denoised signal with a gain factor
gk in an exposure level k. ω() is a pyramid weighting function
that accounts for under- and over-saturation levels of pixels.
Note that our current HDR video method does not require
any deghosting while reconstructing HDR video. The color
transformation matrix from raw RGB to sRGB signals and
white balancing factors are multiplied after reconstructing
HDR to reduce quantization.

1) HDR Tone-Mapping: An HDR tone-mapping operator
is necessary for displaying the reconstructed HDR video
frames on an ordinary LDR display, as the dynamic range
of the reconstructed HDR video frames is higher than
that of the display [51], [52]. We implemented and com-
pared two HDR tone-mapping operators applicable for HDR
video. One is a global tone-mapping operator proposed by
Kim et al. [53], [54]; the other is a local-temporal tone-
mapping operator by Aydin et al. [55]. Both operators pro-
duced high-quality frames with comparable quality. We found
that the jointly operated tone-mapping operator [55] performs
stronger compression of the dynamic range than the global
operator. We mostly use Aydin’s operator for high-dynamic-
range scenes, while we employ Kim’s operator for high fidelity
of color reproduction. Since we do not have rapid luminance
changes in captured scenes, the adaptive parameters in the
operators are determined from the first frame of the scene and
used for the remaining frames to avoid flickering.

V. RESULTS

We implemented our interlaced HDR video algorithm using
two conventional cameras: a custom-built mobile camera mod-
ule (2.4 megapixels) with an SK-Hynix Hi231 image sensor
(see Figure 6) and a Canon EOS 5D Mark III camera
of 22.3 megapixels, equipped with the Dual-ISO module of
an open-source camera firmware, Magic Lantern [23], since
it allows analog-gain controls on commercial DSLR cameras.
odd macro-rows were set to a 16 or 64 times higher gain
factor (ISO 1600 or 3200) adaptively, depending on the
scene’s dynamic range, i.e., manually changing the gain setting
considering the dynamic range of the scenes.

A. Validation of Gain Interlacing

In order to validate our approach that extends the dynamic
range via gain-interlacing, we built an HDR characterization
setup that consists of two transparent color targets and neu-
tral density filters, following Kim and Kautz [5]. As shown
in Figure 7, two photographically enlarged IT 8.7/1 trans-
parent color charts (576 patches in total) are placed on
a diffuse light box in a dark room. The bottom one is
covered with four sheets of two-stop neutral density fil-
ters (256 times less light comes through the filters). The
dynamic range is calculated by a logarithmic ratio of the
largest luminance and the smallest detectable luminance:
20log10

Lmax
Lmin

[dB]. This experimental setup exhibits a dynamic
range of 99.57 dB (16.54 f -stops) overall (max. 5708 cd/m2;
min. 0.06 cd/m2 across both gray-scales). The dynamic range
of this scene is close to the dynamic range of the human eye,
approximately 100 dB [56]. Typical ordinary imaging sensors
can capture a dynamic range from 60 to 70 dB through a
single shot in general [57]. As shown in Figures 7(a) and (b),
ordinary capture cannot cover the full dynamic range due to
the lack of sensitivity and the well capacity of the photodiode,
respectively.

These charts were captured by a Canon EOS 5D Mark III
camera (equipped with a 50 mm lens, the aperture of which
is set to f /4.5) and a spectroradiometer, Jeti Specbos 1200
(calibrated luminance accuracy: ±0.05 at 1000 cd/m2; xy chro-
maticity repeatability: ±0.0005 [58]) simultaneously. Each
side of the captured HDR images is tone-mapped manually
side by side with respect to its exposure level in order to
visualize the captured signals.

LDR images (a) and (b) are separated from the interlaced
readout of ISO100 and 6400, equipped with the Dual-ISO
module [23]. Both images present saturation in over/under-
exposed areas. Image (c) is a one-shot HDR image recon-
structed from the interlaced readout using the proposed
method. Images (d) and (e) are two traditional HDR images
captured using two-shot LDR input images by varying the
ISO (100 and 6400) and the shutter time (1/5 and 1/320),
respectively. These three HDR images (c), (d) and (e) capture
the full dynamic range of 99.57 dB in the setup without
saturation.

B. Validation of HDR Video Reconstruction

1) Sharpness vs. Noise: We first compare our interlaced
HDR reconstruction with three state-of-the-art interlaced HDR
methods proposed by Hajisharif et al. [22], Heide et al. [20]
and Cho et al. [21]. As shown in Figure 8, our proposed
method outperforms these latest interlaced HDR methods in
terms of sharpness and noise. Hajisharif et al. reconstruct
missing exposure and color information assuming the local
color distribution changes smoothly in a Gaussian window.
When they use a narrow Gaussian window, edges become
sharper, sacrificing noise reduction and vice versa. Heide
et al. integrate all the image signal processes for camera into a
single optimization problem, based on multiple regularization
priors such as total variation [59], BM3D denoising [41],
and cross-channel gradient correlation. When they increase
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Fig. 7. Two photographically enlarged IT 8.7/1 transparent charts are placed on a diffuse light box in a dark room, where the bottom one is covered with four
sheets of two f -stops neutral density filters (8 f -stops less light comes through the films. Overall dynamic range: 99.57 dB, 16.54 f -stops). These patches
were captured by a Canon EOS 5D camera and a spectroradiometer (Jeti Specbos 1200). Note that captured HDR images are manually tone-mapped side by
side with respect to their exposure levels for visualization. (a) and (b) are LDR input images separated from the interlaced readout of ISO 100 and 6400,
equipped with the Dual-ISO module [23]. (c) shows our interlaced HDR image reconstructed from the interlaced readout, compared with traditional HDR
images captured by varying the shutter time and ISOs, respectively. (d) and (e) compare one-shot interlaced HDR with traditional HDR images reconstructed
from two-shot images by varying the ISO and the shutter time, respectively. Three HDR images (c), (d) and (e) capture the full dynamic range (99.57 dB) of
the setup without suffering from saturation, compared to the saturated LDR input signals (a) and (b).

Fig. 8. We compare our interlaced HDR video method with three interlaced HDR video methods, captured by two different cameras (the first and the second
row: the SK-Hynix mobile camera and the bottom row: Canon 5D Mark III camera with Magic Lantern). Hajisharif et al. [22] interpolate missing information
of multiple exposures smoothly using Gaussian assumption, which results in blurred edges. Heide et al. [20] employ the BM3D prior to reduce noise, and
missing information is linearly interpolated. Cho et al. [21] deal with interlacing artifacts and noise by applying bilateral filters. These three methods show a
trade-off between denoising and deinterlacing along sharp edges in images, while our proposed method solves this trade-off and achieves clearer video with
significantly less noise than prior works.

noise reduction, sharp edges are sacrificed and vice versa.
Cho et al. alleviate interlacing artifacts by bilateral filter-
like interpolation. They also handle the noise problem with
a bilateral filter. Figure 8(c) shows that the gain-interlaced
noise cannot be effectively removed, as the interlacing artifacts
are often recognized as edge structures in bilateral filtering.
These three methods present a tradeoff between denoising

and deinterlacing along sharp edges, while our proposed
method preserves sharp edges without suffering from noise.
In contrast, our proposed method exploits two different dictio-
nary pairs separately, where they contain external priors from
natural images. This allows effective removal of additive noise
while preserving sharp edges. Refer to the supplemental video
for more results.
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Fig. 9. We compare our interlaced HDR video method with two other temporally-modulated HDR video methods captured by a Canon 5D Mark III with
Magic Lantern. Kang et al.’s method is based on homography computation, where local motion often fails in contrast to global motion, resulting in ghosting
artifacts. Kalantari et al.’s method is based on patch-based reconstruction of multiple exposures across time, but still suffers from jittering and minor ghosting
artifacts. Since jittering is invisible in paper representation, refer to the supplemental video for this artifact. Our method uses concurrent capture using interlaced
exposures. There is marginal motion blur in our method caused by a long shutter time to capture night scenes but no ghosting.

2) Ghosting Artifacts: We also compared our method
with two state-of-the-art HDR video methods proposed by
Kang et al. [15] and Kalantari et al. [17], shown in Figure 9.
The two compared methods are based on temporal modulation
of multiple exposures across time. Since dynamic scenes are
being captured, it is necessary to register corresponding multi-
exposure pairs in both methods. The hierarchical homography
proposed by Kang et al. handles large global motion well;
however, this method is incapable of handling small motion
that is sparsely distributed in scenes, and when scenes are
too dark or too bright, estimating homography fails due to
limited feature points. This results in flickering or ghosting
artifacts. The patch-based reconstruction approach proposed
by Kalantari et al. produces intermediate sequences of multi-
exposures across time. They also find corresponding patches
between neighboring frames via optical flow, which often fails
in scenes with complex or fast dynamic motion. Even though
their method can reduce ghosting artifacts effectively, tempo-
ral inconsistency of patch transformation results in jittering
artifacts in video. Refer to the supplemental video for this
artifact. In contrast, our method uses concurrently captured
interlace input of multiple exposures. It presents only marginal
motion blur for shutter time and no ghosting artifacts. For a fair
comparison, we separate and convert interlaced and denoised
input to sequences of long and short exposures to simulate
temporally-modulated input for other HDR video methods.

3) Motion Estimation: We validate our motion estima-
tion method, which is based on a multiscale homography
flow, compared to Kalantari et al. [17] and Liu et al. [45].
As shown in Figure 10(c), our motion estimate method with
temporal denoising can capture a fast moving object without

Fig. 10. We compare the performance of our motion estimation algorithm
(c) & (f) with Kalantari et al. [17] (a) & (d) and Liu et al. [45] (b) & (e). The
patch matching-based motion estimation (a) cannot track the fast movement of
a pendulum. As shown in the dotted circle of (e), the hierarchical homography
flow blurred an edge of static objects due to wrong motion estimation.

motion artifacts. In contrast, the patch matching-based motion
estimation of Kalantari et al. fails to describe the motion of
a moving pendulum in (a). Although the hierarchical homog-
raphy flow proposed by Liu et al. processes the pendulum
correctly, as shown in (b), it produces blur artifacts as shown
in the circled area in (e). The artifacts show potential failure
cases of the homography flow estimation.

4) Denoising: Figure 11 compares the real additive noise
level of three different steps in our HDR video frame cap-
tured by a mobile image sensor. Column (a) shows a naïve
HDR video frame without any denoising. This video suf-
fers from severe additive noise due to high gain amplitude.
Column (b) shows the result of our spatial denoising step via
the jointly-learned dictionary. The PSNR of the noise removal
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Fig. 11. Our step-wise noise removal. (a) shows a noisy image obtained
after deinterlacing. (b) presents the result of our additive noise removal of
a frame via sparse coding. (c) includes additional noise reduction for video
using nine adjacent frames. (d) is the ground truth generated by averaging
360 consecutive frames of the static region of the cropped color checker in
the upper row.

increases from 19.29 dB to 22.23 dB. Column (c) presents the
result of additionally applying temporal denoising, through
which the PSNR further increases to 23.93 dB. With a
real camera, a noise-free image cannot be captured. Hence,
the ground truth image (d) is computed by averaging
360 frames of still captures.

5) Performance: We reconstruct video clips using a
machine that has an Intel i7-3770 CPU 3.40 GHz with
32 GB memory. It took 2.82 minutes for our method
to process a frame including deinterlacing and denoising.
It took 18.33 minutes for Hajisharif et al., 9.26 minutes
for Heide et al., 16.89 minutes for Kalantari et al. and
1.07 minutes for Kang et al. We used non-optimized
Matlab codes for all the methods. The implementation of
Kalantari et al. is publicly available, provided by the authors,
and the other methods are implemented by ourselves.

C. Deinterlacing
In addition to evaluation of HDR video, we validate the

performance of our individual algorithm blocks, deinterlacing
and denoising. For deinterlacing, we compare our method with
four different super-resolution algorithms: direct copying of
nearest-neighbor rows as naïve deinterlacing, bicubic interpo-
lation, a self similarity-based super-resolution method [60],
and a joint-learning super-resolution method [38], computing
average PSNR and structural similarity (SSIM) [61] over
all 24 standard images of the Kodak PhotoCD dataset [62].
From the reference Kodak RGB images, we created Bayer-
patterned raw images and subsampled odd macro-rows to
synthesize interlaced images, which is identical to our imaging
configuration. The task is to reconstruct a full resolution from
the subsampled readout.

The naïve interpolation of direct copying in column
(a) in Figure 12 suffers from severe weaving artifacts with
low PSNR and SSIM scores. The bicubic interpolation
method in column (b) presents severe blurriness. Two sparse
coding-based methods proposed by Peleg and Elad [60] and
Yang et al. [38] show similar performance. Peleg and Elad’s
method is based on self-similarity. However, their method fails
to detect similar examples in an interlaced image. Yang et al.’s

method customizes example priors to better handle upsampling
while neglecting interlace artifacts. Our method reconstructs
interlaced rows successfully, outperforming the other methods
that include two state-of-the-art super-resolution methods.

D. Removing Noise

1) Synthetic Noise: Denoising has been well studied dur-
ing the last decade. We compare our noise removal against
state-of-the-art denoising methods: BM3D [41], non-local
means (NLM) denoising [32], and total variation l1 (TVL1)
denoising [59]. Following the evaluation protocol in previous
studies of denoising algorithms, we evaluated our denoising
performance. We first generate synthetic gain interlaced noise
with different levels in each gain with the reference Kodak
image dataset, as described in Section IV-B. The gain inter-
laced noise was generated with a Gaussian distribution of
which the standard deviations are [1.80, 2.00, 1.00]×10−3 for
high gain RGB pixels and [1.50, 1.50, 1.50]×10−3 for low
gain RGB pixels, respectively. For a quantitative evaluation
of denoising, the generated noisy images are subjected to
denoising algorithms including ours, and after denoising they
are compared with clean reference images in terms of PSNR
and SSIM metrics. Note that the parameters for the denoising
algorithms that we used are optimized for the highest PSNR
for a fair comparison.

The overall PSNR performance of BM3D (aver. 31.29 dB) is
better than that of our denoising algorithm (aver. 29.59 dB) in
this experiment. The SSIM performance of BM3D (aver. 0.92)
and ours (aver. 0.91) is competitive. Our noise removal
slightly outperforms NLM (aver. 29.18 dB and 0.89) and TVL1
(aver. 30.15 dB and 0.88) in terms of PSNR and SSIM. Refer
to Figure 13. In this experiment with synthetic interlaced
Gaussian noise, the BM3D method outperforms the others
in general. However, as shown in Figure 13, no denoising
algorithm in the comparison group results in PSNR and SSIM
values that are as high as those yielded by our denoising
method. In particular, our denoising method is relatively
effective in preserving image structures while removing noise
artifacts. The reason f or this is that the algorithms such as
NLM and BM3D, designed to take advantage of non-locality,
often fail to find good enough sample patches to extract
common structures without noise.

2) Real Noise in Video: For synthetic noise, we found
that all of these algorithms perform best when the window
parameter is closest to the distribution σ that is used to create
synthetic Gaussian noise. However, the real noise distribution
in a digital camera is unknown in general, and hence it is
practically difficult to calibrate the noise distribution due to
various noise sources in the sensor. The performance of the
algorithms therefore could be different with real noise of a
camera in all real-world conditions.

When we learn a joint dictionary for noise, we model
the noise term τ as linearly additive noise in raw sensor
signals, rather than synthetic Gaussian noise on gamma-
corrected sRGB images. We convert the training sRGB
images to linear sensor readouts with linearly additive noise.
We found that the performance of our HDR video denoising
method is superior to that of both BM3D and VBM3D
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Fig. 12. We compare our deinterlacing against other relevant methods by measuring the PSNR to the reference, in addition to SSIM (in parentheses): directly
copying neighboring rows (naïve interlacing), bicubic interpolation, a self-training sparse-coding method [60], and a joint-learning approach [38]. The PSNR
and SSIM values are computed for the entire area of each image. Refer to the supplemental material for more examples.

Fig. 13. We present examples of additive gain interlaced noise removal in the Kodak dataset by our method (without temporal denoising), compared with
total variation l1 denoising [59], NLM denoising [32] and BM3D [41]. The gain interlaced noise in (a) was generated with Gaussian distributions, of which
standard deviations are [2.95, 3.26, 1.60]×10−3 for high gain RGB pixels and [2.43, 2.43, 2.45]×10−3 for low gain RGB pixels, respectively. Parameters
for each method were optimized for the highest PSNR for a fair comparison.

(video versions of BM3D [41]) as well as NLM and multi-
channel TVL1 denoising. Figure 14 presents video denoising
examples from the SK mobile camera (2.4 MP), which has
a higher level of noise than the Canon DSLR camera. For
a noise-free reference image from a real camera, we capture
video footage (360 frames) of a static scene and average the
frames as a single frame. Note that our method cannot model
the real complex distribution of sensor noise in such various
aspects. More physically accurate noise modeling via sparse
coding remains as future work.

VI. DISCUSSION

Our joint dictionaries learn not only the natural image
prior of clean images patches, but also simultaneously learn
the representation of corrupted image patches. Furthermore,
since they are trained jointly, the mapping between clean
and corrupted image patches is learned as well. Based
on this insight, our interlaced HDR video reconstruction
can outperform state-of-the-art reconstruction approaches,
as demonstrated in Section V. In contrast, other reconstruc-
tion methods compared in our experiments either use priors
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Fig. 14. For real additive noise removal, we compare the performance of our complete additive noise removal with the state-of-the-art video denoising
methods: (a) noisy raw input, (b) total variation l1 denoising for video, (c) NLM denoising [32], (d) Video BM3D [41] and (e) multi-channel NLM. Our
complete noise removal handles real additive noise better, outperforming VBM3D. Here, the ground truth image (f) of an SK mobile camera (2MP) was made
by averaging static 360 frames in the same scene.

from input images, or are based on global optimization
methods.

We capture two different exposures using different gain
amplitudes for each macro-row. This allows us to maximize
the capacity of the analog circuit of the camera through sparse
coding. We diversify the interlaced exposures up to six f -stops
(e.g., ISO 100 and 6400). The degree to which we can extend
the dynamic range depends on the maximum capacity of the
analog circuit in the sensor. In contrast, the maximum dynamic
range of traditional HDR video that varies exposure time row
by row or frame by frame is practically limited by motion
blur in the longer exposure rows or frames. For instance,
Kalantari et al. [17] use two or three frames as input with
exposure intervals of three f -stops to build an HDR video
frame, while capturing thirty frames per second. While both
gain-interlaced and time-varied HDR video methods present
similar extendability of the dynamic range in capturing HDR
video in practice, the proposed gain-interlaced approach does
not suffer from ghosting artifacts or motion blur.

The recent success of deep convolutional neural networks,
CNNs, included impressive achievements in various image
processing and computer vision problems [63]–[65]. Since
CNNs are capable of learning complex nonlinear representa-
tion of observation, which sparse coding is incapable of han-
dling, we expect that CNNs would be beneficial for interlaced
HDR video reconstruction. We leave this as future work to
train deep CNNs that reconstruct HDR video from interlaced
sensor readouts in an end-to-end manner.

VII. CONCLUSION

In interlace-based HDR imaging, two specific problems of
interlace artifacts and additive sensor noises arise, degrading
video quality significantly despite the benefit of concurrent
capture in preventing ghosting artifacts. We sought to develop
a learning-based solution that focuses on these two specific
problems by making use of partial information of under-/over-
exposure in interlaced HDR input. We also tailored sparse

representation to better handle additive noise via multiscale
homography flow in an interlaced HDR video stream. The
proposed method allows users to obtain interlaced HDR video
using a conventional camera. Gain-controlled interlacing will
become widely available soon. We believe that the proposed
method would be beneficial to users who do not have access
to an expensive HDR video system, allowing for high-quality
HDR video using a conventional camera.
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